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Chapter 1 Introduction  1 

1 Introduction 
 

Purpose 

The purpose of this report is to provide a complete set of documentation for 
the FEMWATER groundwater model.  The intended users of the manual will 
have a wide range of technical experience and have widely different needs that 
the model and documentation will fulfill.  While it is impossible to address all 
needs in the body of one document, this report has been written to provide useful 
information for all users.  Sophisticated users will find descriptions of the 
numerical techniques and a complete set of governing equations that form the 
theoretical basis of the model.  The casual user will find examples of several 
types of problems that it is hoped will include their type of application.  With 
little effort the casual modeler will be able to follow the examples provided and 
spend little time with problem setup. 

FEMWATER Origins 

In the early 1990’s, the Athens Laboratory of the U.S. Environmental 
Protection Agency (AERL) and the U.S. Army Engineer Waterways Experiment 
Station (WES) conducted independent evaluations of a wide variety of 
groundwater models to determine which existing groundwater models could be 
adopted for use in their in-house applications.  AERL was interested in adopting 
a three-dimensional (3-D) variably saturated model for wellhead protection use 
that could model irregular geometries.  WES was interested in the same 
capabilities but for the purposes of conducting groundwater remediation studies 
at contaminated Department of Defense sites and for salinity intrusion 
applications in U.S. Army Corps of Engineers navigation projects.  The 
independent evaluations by both agencies resulted in the selection of the 
3DFEMWATER (Yeh 1987b) and 3DLEWASTE (Yeh 1990) models for future 
development and implementation within their agencies.  Once it became known 
to the agencies that they had similar interests and research responsibilities, a 
cooperative research agreement was reached and work began on a single 
groundwater modeling system to support both agencies.  FEMWATER is the 
name of the developed model. 
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FEMWATER is a modern implementation of the two older models, 
3DFEMWATER (flow) and 3DLEWASTE (transport).  FEMWATER was 
formed by combining the two codes into a single coupled flow and transport 
model.  The 3DFEMWATER and 3DLEWASTE models were originally written 
by Dr. Gour-Tsyh (George) Yeh at Pennsylvania State University while 
FEMWATER was written as a collaborative effort between Dr. Yeh and Dr. 
Hsin-Chi (Jerry) Lin at WES. 

The improvements implemented in FEMWATER are numerous.  First, the 
entire program structure was changed to allow its integration into the Department 
of Defense Groundwater Modeling System (GMS).  The GMS contains a state-
of-the-art graphical user environment that allows efficient model setup and 
visualization (Engineering Computer Graphics Laboratory (ECGL) 1996).  This 
was a particularly onerous task in the older implementation of the model since it 
suffered from the common limitations of older FORTRAN codes.  Second, a 
series of new solvers were added to replace the previously used block iterative 
solver.  The new solvers allow an arbitrary node numbering scheme that allows 
easier graphical user interface connections and still enjoy improved 
computational efficiency.  Third, density-driven (salinity) transport capability 
was added to allow salinity intrusion studies in coastal aquifers.  This required 
the coupling of flow and transport within a common model.  Previous versions 
separated the flow and transport calculations. 

Improvements in Version 3.0 of FEMWATER over previous versions 
include the addition of a dynamic relaxation parameter, dynamic time-step size 
reduction in cases of difficult convergence, a new output file giving fluid flux at 
mesh nodes, revisions to the preconditioned-conjugate gradient solver packages 
previously added to FEMWATER, the option to use B-spline functions in 
obtaining values from the user-input soil moisture curves and the ability to 
specify effective porosity separately from total porosity for use in transport 
calculations.   

Formulation of FEMWATER 

FEMWATER is designed to solve the following system of governing 
equations along with initial and boundary conditions, which describe flow and 
transport through saturated-unsaturated porous media.  The governing equations 
for flow are basically the modified Richards equation, which is derived in 
Appendix A.  The equation is as follows: 

Governing equations for flow 

ρ
ρ

∂
∂

ρ
ρ

ρ
ρo o

F
h
t

h z= ∇ ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥ +K

*

o
q  (1) 
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F
n

n
dS
dh

= ′ + ′ +α
θ

β θ  (2) 

where 

F = storage coefficient 

h = pressure head 

t = time 

K = hydraulic conductivity tensor 

z = potential head 

q = source and/or sink 

ρ = water density at chemical concentration C 

ρo = referenced water density at zero chemical concentration 

ρ* = density of either the injection fluid or the withdrawn water 

θ = moisture content 

α′ = modified compressibility of the medium 

β′ = modified compressibility of the water 

n = porosity of the medium 

S = saturation 

The hydraulic conductivity K is given by 

( )
( )K k k Ks= = =

ρ
μ

ρ ρ

μ μ

ρ
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ρ ρ
μ μ
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ko

o

o

o
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where 

μ = dynamic viscosity of water at chemical concentration C 

μo = referenced dynamic viscosity at zero chemical concentration 

k = permeability tensor 

ks = saturated permeability tensor 

kr = relative permeability or relative hydraulic conductivity 

Kso = referenced saturated hydraulic conductivity tensor 

The referenced value is usually taken at zero chemical concentration.  The 
density and dynamic viscosity of water are functions of chemical concentration 
and are assumed to take the following form 

ρ
ρo

a a C a C a C= + + +1 2 3
2

4
3  (4) 

and 

μ
μo

a a C a C a C= + + +5 6 7
2

8
3  (5) 

where a1, a2, ..., a8 are the parameters used to define concentration dependence of 
water density and viscosity and C is the chemical concentration. 

The Darcy velocity is calculated  as follows 

V K= − ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ρ

o h z  (6) 

Initial conditions for flow equation.  The initial conditions for the flow 
equation are given by Equation (7): 

h h x y z in Ri= ( , , ) ,  (7) 

where R is the region of interest and hi is the prescribed initial condition, which 
can be obtained by either field measurements or by solving the steady state 
version of Equation (1). 
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,

Boundary conditions for flow equation.  The boundary conditions for the 
flow equation are given in the following equations. 

a.  Dirichlet conditions: 

h h x y z t on Bd b b b d= ( , , , )  (8) 

b.  Gradient flux conditions: 

− ⋅ ⋅ ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
n b b b nh q x y z t on B( , , , ) ,  (9) 

c.  Flux conditions: 

− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
c b b b ch z q x y z t on B( , , , ) ,  (10) 

d.  Variable conditions during precipitation period: 

h h x y z t on Bp b b b v= ( , , , ) ,  (11) 

or 

− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
p b b b vh z q x y z t on B( , , , ) ,  (12) 

e.  Variable conditions during nonprecipitation period: 

h h x y z t on Bp b b b v= ( , , , ) ,

,

 (13) 

or 

h h x y z t on Bm b b b v= ( , , , )  (14) 

or 
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− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
e b b b vh z q x y z t on B( , , , ) ,  (15) 

where 

(xb,yb,zb) = spatial coordinate on the boundary 

n = outward unit vector normal to the boundary 

hd = Dirichlet functional value 

qn = Gradient flux value 

qc = Flux value 

Bd = Dirichlet boundary 

Bn = Gradient flux boundary 

Bc = Flux boundary 

Bv = variable boundary 

hp = ponding depth 

qp = throughfall of precipitation on the variable boundary 

hm = minimum pressure on the variable boundary 

qe = evaporation rate on the variable boundary 

Only one of Equations (11)-(15) is used at any point on the variable 
boundary at any time. 

Governing equations for transport  

The governing equations for transport are derived based on the continuity of 
mass and flux laws as given in Appendix A.  The major processes are advection, 
dispersion/diffusion, adsorption, decay, biodegradation, and source/sink. 
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S K C= for  linear  isotherm  (17) 

S
S KC

KC
=

+
max

1
for  Langmuir   isotherm  (18) 

S KCn= for  Freundlich   isotherm  (19) 

where 

θ = moisture concentration 

ρb = bulk density of the medium (M/L3) 

C = material concentration in aqueous phase (M/L3) 

S = material concentration in adsorbed phase (M/M) 

t = time 

V = discharge 

∇ = del operator 

D = dispersion coefficient tensor 

α′ = compressibility of the medium 

h = pressure head 

λ = decay constant 

m = q Cin = artificial mass rate 

q = source rate of water 
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Cin = material concentration in the source 

Kw = first order biodegradation rate constant through dissolved phase 

Ks = first order biodegradation rate through adsorbed phase 

F = storage coefficient 

Kd = distribution coefficient 

Smax = maximum concentration of medium in the Langmuir nonlinear 
isotherm 

n = power index in the Freundlich nonlinear isotherm 

K = coefficient in the Langmuir or Freundlich nonlinear isotherm. 

The dispersion coefficient tensor D in Equation (16) is given by 

θD V
VV
V

= + − +a a a aT L T mδ ( ) θτδ

i

 (20) 

where 

|V| = magnitude of V 

δ = Kronecker delta tensor 

aT = lateral dispersivity 

aL = longitudinal dispersivity 

am = molecular diffusion coefficient 

τ = tortuosity 
 

Initial conditions for transport equation.  The initial conditions for the 
transport equation are given by Equation (16): 

C C x y z in R= ( , , )  (21) 

where R is the region of interest and Ci is the prescribed initial condition, which 
can be obtained by either field measurements. 
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Boundary conditions for transport equation.  The boundary conditions for 
the transport equation are given in the following equations. 

a.  Dirichlet conditions: 

C C x y z on Bd b b b d= ( , , )  (22) 

b.  Variable conditions: 

( ) ( )n V D n V n V⋅ − ⋅∇ = ⋅ ⋅ ≤C C C x y z t ifv b b bθ , , , 0  (23) 

( )n D n V⋅ − ⋅∇ = ⋅ >θ C if0 0  (24) 

c.  Flux conditions: 

( ) ( )n V D⋅ − ⋅∇ =C C q x y z t onc b b b cθ , , , B  (25) 

d.  Gradient flux conditions: 

( ) ( )n D⋅ − ⋅∇ =θ C q x y z t on Bn b b b n, , ,  (26) 

where 

(xb,yb,zb) = spatial coordinate on the boundary 

n = outward unit vector normal to the boundary 

Cd = concentration on the Dirichlet boundary 

Cv = concentration of water through the variable boundary 

Bd = Dirichlet boundary 

Bv = variable boundary 
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qc = total flux through the boundary Bc 

qn = total gradient flux through the boundaries Bn 

Since the hybrid Lagrangian-Eulerian approach is used to simulate Equation 
(16), it is written in the Lagrangian-Eulerian form as 

( ) ( ) ( )
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d
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=
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 for  linear  isotherm  model  (28) 
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V
V

f = θ
for Freundlich and Langmuir models  (30) 

where Vd and Vf are the retarded and fluid pore velocities, respectively; and 
Dvd()/Dt and Dvf()/Dt denote the material derivative of ( ) with respect to time 
using the retarded and fluid pore velocities, respectively. 

The flow equation, Equation (1), subject to initial and boundary conditions, 
Equations (8)-(15), is solved with the Galerkin finite element method.  The 
transport equations, Equations (27) and (28) or (29) and (30), subject to initial 
and boundary conditions, Equations (21)-(26), are solved with the hybrid 
Lagrangian-Eulerian finite element methods.  Detailed implementation of the 
numerical approximation of flow and transport problems is given in Appendix B. 
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2 Running FEMWATER 
 

File Organization 

FEMWATER was designed to be operated in batch mode.  The input for 
FEMWATER is organized into a set of input files.  The output from 
FEMWATER is a combination of screen and file output.  A summary of the 
input and output files is shown in Table 1 and Table 2. 

Super File 

When FEMWATER is launched, the user is prompted for the name of a 
single input file.  This file is called the “super file” and contains a list of all of the 
appropriate input and output files used in a particular simulation.  Grouping the 
file names in a super file simplifies file management and eliminates the need to 
type the names of all of the files each time a simulation is performed.  The format 
of the super file is shown in Figure 1. 

FEMSUP /* File type identifier */ 
GEOM  filename /* Geometry file */ 
BCFT  filename /* Model file */ 
PRTF  filename /* Printed output file */ 
ICHD  filename /* Pressure head initial condition file */ 
ICMC  filename /* Moisture content (nodal)  initial condition file */ 
ICVL  filename /* Velocity initial condition file */ 
ICCN  filename /* Concentration initial condition file */ 
FLVL  filename /* Velocity flow file (for transient only simulations) */ 
FLPH  filename /* Pressure head file (for transient only simulations) */ 
PSOL  filename /* Pressure head solution file */ 
MSOL  filename /* Moisture content (nodal) solution file */ 
VSOL  filename /* Velocity solution file */ 
CSOL  filename /* Concentration solution file */ 
BFXF  filename /* Nodal boundary fluid flux solution file */ 

Figure 1.  Super file format 
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Table 1 
Input Files 

File Name Description 

Super File Text file containing  a list of all of the input and output files used in a 
FEMWATER simulation. 

Geometry File Text file containing the data describing the finite element mesh, i.e., 
nodal coordinates and element topology. 

Model File Text containing analysis parameters and options, material 
properties , boundary conditions, and initial condition options. 

Initial Condition Files Text or binary files containing concentration, pressure head, 
velocity, moisture content initial conditions. 

Flow Files Text or binary files containing a previously computed flow solution 
(pressure head and velocity) which are used to define a 3-D flow 
field for a transport only simulation. 

 

Table 2 
Output Files 

File Name Description 

Printed Output Text file containing a summary of the output. 
Pressure Head Text or binary file containing the computed pressure heads.  Used 

for post-processing or as initial conditions for a subsequent 
analysis. 

Moisture Content  Text or binary file containing the computed moisture content at 
nodes.  Used for post-processing. 

Velocity Text or binary file containing the computed Darcian velocities. Used 
for post-processing. 

Concentration Text or binary file containing the computed concentrations.  Used 
for post-processing or as initial conditions for a subsequent 
analysis. 

Nodal Boundary Fluid Flux Text or binary file containing the computed nodal fluid flux passing 
through each node of the mesh.  Internal nodes, unless assigned a 
point source or sink, will all be zero.  Nodes with boundary 
conditions applied can have non-zero fluid flux rates. 

Nodal Boundary 
Concentration Flux 

Text or binary file containing the computed nodal concentration flux 
passing through each node of the mesh.  Internal nodes, unless 
assigned a point source or sink, will all be zero.  Nodes with 
boundary conditions applied can have non-zero fluid flux rates. 

The first record in the file is the file type identifier.  Each of the subsequent 
records represents an input or an output file.  The first field in each record is a 
four-character string identifying the type of the file listed in the record.  The 
second field in each record is the name of the corresponding file.  The files 
should be in the same directory as the super file. 
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Not all of the files shown in Figure 1 are required for every simulation.  
Some of the initial condition files are not required depending on the initial 
condition options specified in the model file.  Also, the user can also specify in 
the model file not to output some of the solution files. 

Card Style Format 

The records used in the super file format shown in Figure 1 are representative 
of the formatting style used for all of the FEMWATER input files.  This format is 
often referred to as the “card style” format.  With this format, the components of 
the file are grouped into logical groups called “cards.”  Typically, each card is a 
single line or record; however, some cards extend to multiple lines.  The first 
component of each card is a short name that serves as the card identifier.  The 
remaining fields on the line contain the information associated with the card.  In 
some cases, such as lists, a card can use multiple lines.  All of the cards are 
assumed to be free-format. 

Several advantages are associated with the card type approach to formatting 
files: 

a.  Card identifiers make the file easier to read.  Each input line has a label, 
which helps to identify the data on the line. 

b.  The card names are useful as text strings for searching in a large file.  All 
input lines of a particular type can be located quickly in a large input file. 

c.  Cards allow the data to be input in any order in many cases; i.e., the 
order that the cards appear in the file is usually not important. 

d.  Cards make it easy to modify a file format.  New data can be included 
simply by defining a new card type.  If the new card is optional (which is 
typically the case for new cards) old files are still compatible.  If an old 
card type is no longer used, the card can simply be ignored without 
causing input errors. 

Other Files 

Each of the files listed in the super file are described in more detail in 
subsequent chapters.  The geometry file is described in Chapter 3, the contents of 
the model file are described in Chapters 3, 4, 5, and 6, the initial condition files 
are described in Chapter 7, and the solution files are described in Appendix C. 
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3 Meshes 
 

Introduction 

The computational discretization utilized by FEMWATER is a three-
dimensional finite element mesh.  The volumetric domain to be modeled by 
FEMWATER must be idealized and discretized into hexahedra, prisms, and/or 
tetrahedra.  Elements are typically grouped into zones representing different 
stratigraphic units.  Each element is assigned a material ID representing the zone 
to which the elements belongs.  When constructing a mesh, care should be taken 
to ensure that elements do not cross or straddle stratigraphic boundaries. 

Elements Supported 

The types of elements supported by FEMWATER are shown in Figure 2.  
Each of the elements are linear; quadratic elements are not supported.  Although 
all three element types are supported, tetrahedra do not perform as well as the 
other types and should be avoided if possible.  The numbering sequence shown 
in Figure 2 should be used when describing the elements in the geometry file. 

Geometry File Format 

The coordinates of the mesh nodes and the element topology are input to 
FEMWATER through the geometry file.  The format of the geometry file is 
shown in Figure 3. 
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Tetrahedron
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78

Hexahedron

 

Figure 2.  The element types supported by FEMWATER 

3DFEMGEO /* File type identifier */ 
T1 text /* Title, line 1 */ 
T2 text /* Title, line 2 */ 
T3 text /* Title, line 3 */ 
GN id x y z /* Nodal coordinates */ 
GE8 id n1 n2 n3 n4 n5 n6 n7 n8 matid /* Hex. Element */ 
GE6 id n1 n2 n3 n4 n5 n6 matid /* Prism element */ 
GE4 id n1 n2 n3 n4 matid /* Tetrahedral element */ 
END /* End of input data */ 

Figure 3.  Geometry file format 

The cards used in the geometry file are as follows: 

 
Card Type 3DFEMGEO 
Description File type identifier.  Must be on first line of file.  No fields. 
Required YES 
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Card Type T1, T2, T3 
Description Three title lines.  Any text can be entered on these lines.  The text is used as a banner 

to the printed output. 
Required NO 
Format T1 text 

T2 text 
T3 text 

Sample T1 Salinity intrusion problem 
T2 ACR Environmental Services Inc. 
T3 June 19, 1995 

 
Card Type GE8 
Description Hexahedral element.  One entry for each hexahedral element in the mesh.  The 

ordering of the nodes should correspond to the diagram in Figure 2. 
Required YES 
Format GE8 id n1 n2 n3 n4 n5 n6 n7 n8 matid 
Sample GE8 10 847 938 943 928 380 942 835 655 1 
Field Variable Value Description 

id NEL + The ID of the node. 
N1 IE(NEL,1) + The index of node number 1. 
N2 IE(NEL,2) + The index of node number 2. 
N3 IE(NEL,3) + The index of node number 3. 
N4 IE(NEL,4) + The index of node number 4. 
N5 IE(NEL,5) + The index of node number 5. 
N6 IE(NEL,6) + The index of node number 6. 
N7 IE(NEL,7) + The index of node number 7. 
N8 IE(NEL,8) + The index of node number 8. 

Matid IE(NEL,9) + The element material index. 
 
Card Type GE6 
Description Wedge or prism element.  One entry for each wedge element in the mesh.  The 

ordering of the nodes should correspond to the diagram in Figure 2. 
Required YES 
Format GE6 id n1 n2 n3 n4 n5 n6 matid 
Sample GE6 10 847 938 943 928 380 942 1 
Field Variable Value Description 

id NEL + The ID of the node. 
N1 IE(NEL,1) + The index of node number 1. 
N2 IE(NEL,2) + The index of node number 2. 
N3 IE(NEL,3) + The index of node number 3. 
N4 IE(NEL,4) + The index of node number 4. 
N5 IE(NEL,5) + The index of node number 5. 
N6 IE(NEL,6) + The index of node number 6. 

Matid IE(NEL,9) + The element material index. 
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Card Type GE4 
Description Tetrahedral element.  One entry for each tetrahedral element in the mesh.  The 

ordering of the nodes should correspond to the diagram in Figure 2. 
Required YES 
Format GE4 id n1 n2 n3 n4 matid 
Sample GE4 10 847 938 943 928 1 
Field Variable Value Description 

id NEL + The ID of the node. 
N1 IE(NEL,1) + The index of node number 1. 
N2 IE(NEL,2) + The index of node number 2. 
N3 IE(NEL,3) + The index of node number 3. 
N4 IE(NEL,4) + The index of node number 4. 

Matid IE(NEL,9) + The element material index. 
 
Card Type GN 
Description Mesh node.  One entry for each node in the mesh. 
Required YES 
Format GN id x y z 
Sample GN 83 3482.4 4389.3 34.6 
Field Variable Value Description 

id NNP + The ID of the node. 
X X(NNP,1) ± The x coordinate of the node [L]. 
y X(NNP,2) ± The y coordinate of the node [L]. 
z X(NNP,3) ± The z coordinate of the node [L]. 

 
Card Type END 
Description End of input data marker. 
Required YES 

Mesh Generation Guidelines 

As with any finite element problem, special care should be used in the 
construction of the mesh to avoid numerical instability.  Numerical accuracy and 
stability are often competing interests.  Procedures that assist in achieving model 
stability often do so to the detriment of accuracy.  When the need for 
computational efficiency is added to accuracy and stability concerns, mesh 
generation can be a difficult task.  Indeed, many consider it an art form although 
numerical efforts are under way to minimize the artistic requirements. 

Prior to mesh generation, the hydrogeologic conceptual model should be well 
defined.  The stratigraphy and associated variations in hydraulic conductivity 
should be well understood.  Boundary conditions, whether they are surface 
recharge, salinity concentrations, or wells, should be known in detail.  The 
locations of remediation structures or other mitigative treatments should be 
mapped.  Once all of this information is known, it is possible to start the mesh 
generation process.  Guidelines are now presented to assist in the process. 

The computational domain required for FEMWATER is an unstructured, 
three-dimensional finite element domain. The recommended method for 
construction of such a numerical domain requires first that a two-dimensional 
projection mesh be constructed.  This projection mesh will be extruded into 
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layers of three-dimensional finite elements, forming the computational domain 
for FEMWATER.  The two-dimensional mesh will determine the horizontal 
position of all nodes in the three-dimensional mesh while the vertical position of 
these nodes will be determined by the stratigraphic conceptual model.   

The first step in setting up a two-dimensional projection mesh is to take the 
conceptual model generated in the subsurface conceptualization phase and 
determine where the external boundary conditions will be located.  These will 
essentially coincide with locations where water table information around the area 
of interest is available.  The external edges of the model should be located where 
this information is well known.  The next step is to determine the number of 
elements and their best distribution to solve the flow and transport problem.  
Simply put, fine mesh spacing should be located where head or concentration 
gradients are expected to be maximum.  This will certainly be near wells that 
have caused significant cones of depression.  However, care must be given to 
gradually vary the size of the elements to avoid numerical errors. For example, 
the 50 percent rule should be followed whenever possible: the size of an element 
should not differ from the size of an adjacent element by more than 50 percent.  
Additionally, every effort should be made to avoid highly skewed or irregularly 
shaped elements.   

Once a projection mesh has been developed, interest should shift to the 
proper vertical element spacing.  Issues with regard to element spacing are 
applicable to the vertical as well as horizontal dimensions.  Fine resolution 
should be placed in vertical regions where head or concentration gradients are 
greatest and most particularly in the unsaturated zone.  For example, if a highly 
conductive aquifer is adjacent to a highly impermeable aquiclude, fine mesh 
resolution is required in the vicinity of the interface. In general, there should be a 
minimum of three layers of elements vertically for each distinct stratigraphic unit 
particularly if large variations of hydraulic conductivity occur in adjacent layers.  
As an aside, if large variations in hydraulic conductivity are required, no two 
adjacent layers should vary by more than three orders of magnitude.  If this rule 
is violated, the solutions will likely be inaccurate and probably slow to converge.  
If there are indeed sharp variations in conductivity, then many layers should be 
used and the values varied gently over the short distance in which they change. 

When setting up a mesh for a transport analysis, all of the previous issues are 
germane as well as one other.  First, if hexahedral elements are used, each 
element should be constructed such that all of the element faces are planar.  This 
is a particular requirement because the particle tracking algorithm used by 
FEMWATER may break down if a particle crosses an element face that is not 
planar.  Triangular faces are always planar, but quadrilateral faces may or may 
not be planar. 

On the subject of computational efficiency, it is important to note that the 
smallest number of elements does not always provide the fastest simulation.  It is 
quite possible to construct a model with insufficient numbers of elements to 
characterize the problem adequately, thereby creating a simulation that is slow to 
converge.  In short, fewer elements will be used in the calculation, but greater 



 

Chapter 3 Meshes  19 

numbers of iterations will be required.  In general, if sufficient numbers of 
elements are used, fewer iterations will be required to converge on a solution.  It 
is better to use large numbers of elements for few iterations to get accurate 
answers than to use few elements for many iterations to get inaccurate and 
possibly divergent answers.  
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4 Analysis Options 

 

Introduction 

One of the primary FEMWATER input files is the model file, which consists 
of analysis options, material properties, boundary, and initial conditions.  The 
first of these groups, the analysis options, are described in this Chapter.  The 
material properties are described in Chapter 5, the boundary conditions are 
described in Chapter 6, and the initial conditions are described in Chapter 7. 

File Format 

The set of cards in the model file corresponding to analysis options is shown 
in Figure 4.  The file type identifier and the title cards are similar to the 
corresponding cards found in the geometry file and described in Chapter 0.  Each 
of the remaining cards is described in more detail in the following sections. 

Run Option Parameters 

The run option parameters designated on cards OP1, OP2, OP3, OP4, and 
OP5 include options for specifying the type of simulation, the solver, relaxation 
parameters, and sorption options. 

Type of simulation (OP1) 

The OP1 card is used to specify the type of simulation to be performed by 
FEMWATER. The parameter KMOD indicates the type of simulation to be 
conducted. 
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3DFEMWBC /* File type identifier */ 
T1 text /* Title, line 1 */ 
T2 text /* Title, line 2 */ 
T3 text /* Title, line 3 */. 
OP1 kmod /* Simulation type */ 
OP2 kssf ksst ilump imid ipntsf iquar /* Solver options */ 
OP3 wf omef omif omemin omemax omeadd omered /* Weight factor and relaxation parameters */ 
OP4 ksorp /* Sorption */ 
OP5 gg /* Upper bound for eigen value */ 
IP1 niterf ncycle npiterf tolaf tolbf ibspl /* Iteration opt.s, flow, b-spline option flag */ 
IP2 nitert npitert tolbt /* Iteration opt.s, trans. */ 
IP3 nitfit omeftt epss epst /* Iteration opt.s, coupled */ 
PT1 nxw nyw nzw idetq /* Particle tracking opts */ 
TC1 tmax /* Total simulation time */ 
TC2 idt delt idtxy /* Time-step definition */ 
OC1 ibug ichng jopt kprt/nprint /* Print options */ 
OC2 nselt kpro() /* Print options */ 
OC3 ifile kopt kdsk/npost /* Format and interval */ 
OC4 kselt ksave() /* Solution file opts */ 

Figure 4.  The analysis option cards in the model file 

 
Card Type OP1 
Description Type of simulation. 
Required YES 
Format OP1 kmod 
Sample OP1 10 
Field Variable Value Description 

1 KMOD 10 
1 

11 

Flow simulation only. 
Transport simulation only. 
Coupled flow and transport. 

The following options are available: 

a.  Perform a flow simulation only (KMOD=10). 

b.  Perform a transport simulation only(KMOD=1).  For this case, a steady-
state or transient flow simulation must be performed prior to the transport 
simulation.  The resulting pressure heads of this simulation are then input 
to FEMWATER as flow variables.  While only pressure heads are 
required as input, previous versions of FEMWATER required that the 
velocity field also be input for a transport only simulation.  To ensure 
backward compatibility, the velocity field may also be input as a flow 
variable but it is not required.  The steps involved in setting up the proper 
initial conditions are described in Chapter 7. 

c.  Perform a coupled flow and transport simulation (KMOD=11).  With a 
coupled flow and transport simulation, the user has the option of 
simulating either density-dependent flow or density-independent flow.  
This option is controlled by entering the appropriate parameters defining 
the relationship between concentration and density  and concentration 
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and viscosity.  These parameters are entered on the MP4 card described 
in the section “Concentration Dependence Coefficients (MP4)” in 
Chapter 5. 

(1)  Density-dependent flow.  In this case, the flow and transport 
simulations are performed simultaneously.  The concentration of the 
solute changes the density of the solution, thus changing the flow 
solution.  This option should be chosen only for density dependent 
flow problems such as salinity intrusion in coastal aquifers. The 
proper setting for this case is shown in sample problem 5 of Chapter 
8. 

(2)  Density-independent flow.  In this case, the flow and transport 
simulation are performed sequentially for every time-step.  The 
proper setting for this case is shown in sample problem 3 of Chapter 
8. 

Solver options (OP2) 

The OP2 card is used to select the type of time mode (steady-state or 
transient) to be used and to set various solver options. 

 
Card Type OP2 
Description Solver options. 
Required YES 
Format OP2 kssf ksst ilump imid ipntsf iquar 
Sample OP2 1 1 1 0 1 1 
Field Variable Value Description 

1 KSSF 0 
1 

Steady-state flow simulation. 
Transient flow simulation. 

2 KSST 0 
1 

Steady-state transport simulation. 
Transient transport simulation.  
(Note: KSSF and KSST must be set to the same value) 

3 ILUMP 0 
1 

No mass lumping. 
Mass lumping. 

4 IMID 0 
1 

No mid-difference. 
Mid-difference. 

5 IPNTSF 1 
2 
3 

The pointwise iterative matrix solver. 
P.C.G. method (polynomial). 
P.C.G. method (incomplete Cholesky). 

6 IQUAR 11 
12 
21 
22 

Nodal/nodal quadrature. 
Nodal/ gaussian quadrature. 
Gaussian/nodal quadrature. 
Gaussian/gaussian quadrature. 

Steady-state versus transient.  FEMWATER can be run in either a steady-
state or transient mode.  The steady state mode is allowed only when the flow-
simulation-only option has been selected with the OP1 card.  FEMWATER uses 
the Lagrangian-Eulerian finite element method to solve the transport equation.  
Therefore, the steady-state mode of transport simulation is not allowed in this 
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option.  The transient mode must be used when a transport simulation is being 
performed. 

Mass lumping (ILUMP).  This parameter indicates whether or not the mass 
matrix is to be lumped. With lumping (ILUMP=1), the solution is less accurate 
but potentially more stable. For saturated-unsaturated flow computations, or if 
negative concentrations or oscillating solutions occur, this parameter should be 
set to 1.  If the computations are quite stable, particularly in largely saturated 
flow simulations, the parameter should be set to zero. 

Mid-difference (IMID).  This parameter indicates if the mid-difference 
method should be used in both the flow and transport computations.  If IMID =1, 
the mid-difference method is used.  Setting IMID=1 is reserved for research 
purposes so IMID=0 is the preferred setting. 

Solver Selection (IPNTSF).  The following three solvers are provided in 
FEMWATER: 

a.  Pointwise iterative matrix solver.  The pointwise iterative matrix solver 
employs the basic successive iterative method to solve the matrix 
equation, including the Gauss-Seidel method, successive 
underrelaxation, and successive overrelaxation.  When the resulting 
matrix is diagonally dominant, the pointwise iterative solver provides a 
convergent solution.  This solver is preferred because it is more robust 
than the other two solvers.  However, when the speed of convergence is 
too slow, one may wish to choose one of the other two solvers. 

b.  Preconditioned conjugate gradient method (polynomial).  This solver 
employs the conjugate gradient method to solve the matrix equation.  It 
uses a polynomial as a preconditioner.  This matrix solver provides a 
convergent solution when the resulting matrix is symmetric positive 
definite (SPD). Theoretically, the convergence speed is faster than the 
pointwise iterative solver.  This solver should be used only when the 
pointwise iterative solver is too slow. 

c.  Preconditioned conjugate gradient method (incomplete Choleski).  This 
solver employs the conjugate gradient method using the incomplete 
Choleski decomposition as the preconditioner.  A convergent solution is 
provided when the matrix is SPD.  However, when the matrix is slightly 
non-symmetric, the solver could also give convergent solutions.  Its 
speed of convergence is theoretically faster than the pointwise iterative 
solver and is comparable to the polynomial preconditioned conjugate 
gradient method.  This solver should be used only when the pointwise 
iterative solver is too slow.  This solver is generally but not always 
preferred over the polynomial preconditioned conjugate gradient method. 

Quadrature selection (IQUAR).  This parameter is an indicator of the type 
of quadrature used in the numerical integration.  The following four quadrature 
options are provided: 
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a.  Nodal/nodal quadrature.  Nodal quadrature is used for surface and 
element integration. 

b.  Nodal/gaussian quadrature.  Nodal quadrature is used for surface 
integration, and gaussian quadrature is used for element integration. 

c.  Gaussian/nodal quadrature.  Gaussian quadrature is used for surface 
integration, and nodal quadrature is used for element integration. 

d.  Gaussian/gaussian quadrature.  Gaussian quadrature is used for both 
surface and element integration. 

Gaussian/gaussian quadrature yields the most accurate solution and should be 
used as the default value.  However, this option may provide oscillations or 
divergence in highly nonlinear problems.  When this occurs, the user should try 
to use the nodal/nodal quadrature.  Once these options have been used 
unsuccessfully, the remaining options can be tried. 

Weighting factor options (OP3) 

The OP3 card is used to select the type of time derivative and relaxation 
weighting factors to be used and to set several parameters associated with the 
weighting factor. 

 
Card Type OP3 
Description Weighting factor options. 
Required YES 
Format OP3 wf omef omif omemax omemin omeadd omered 
Sample OP3 1.0 1.0 1.0 1.5 0.001 0.005 0.667 
Field Variable Value Description 

1 WF 0.5 
1.0 

Crank-Nicolson. 
Backward difference. 

2 OMEF  
0.0-1.0 

1.0 
1.0-2.0 

Iteration param. For nonlinear flow and transport. 
  Underrelaxation. 
  Exact relaxation. 
  Overrelaxation. 

3 OMIF  
0.0-1.0 

1.0 
1.0-2.0 

Iteration param. For linearized flow and transport. 
  Underrelaxation. 
  Exact relaxation. 
  Overrelaxation. 

4 OMEMAX 1.0-2.0 Upper limit for dynamic relaxation, typically 1.5 
5 OMEMIN 0.0-1.0 Lower limit for dynamic relaxation, typically 0.001 
6 OMEADD + Amount added when relaxation parameter is 

dynamically increased, typically 0.005 
7 OMERED + Reduction factor applied when relaxation parameter is 

dynamically reduced, typically 0.667 

Weighting factor type (WF).  This parameter determines how one would 
evaluate the time derivative terms associated with the velocity in the flow 
equation.  Two types of weighting factors are available: 
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a.  Crank-Nicolson central (WF=0.5).  When new time derivatives are 
determined by averaging the previous time derivative and an estimated 
time derivative, the process is called Crank-Nicolson central weighting. 

b.  Backward difference (WF=1.0).  When the time derivatives are evaluated 
only at the new time, the process is called backward difference 
weighting. 

A value of WF equal to 1.0 (an implicit numerical scheme) should be used 
for most practical problems.  Setting WF equal to 0.5 is normally done for 
research purposes to assess the accuracy of the Crank-Nicolson scheme. 

Relaxation parameter for solving nonlinear flow and transport 
equations (OMEF).  When the flow and transport equations are nonlinear, an 
estimate of the pressure head and the concentration is needed to compose the 
matrix equation.  There are three options to estimate the pressure head and 
concentration based on previous guesses and newly obtained values: 
underrelaxation, exact relaxation, and overrelaxation.  OMEF is a weighting 
factor that is applied to the newly obtained values, and a weighting factor of 1.0 
minus OMEF is applied to the previous guesses.  For underrelaxation, a value of 
OMEF between 0.0 and 1.0 is used for the newly obtained values.  For exact 
relaxation OMEF is set equal to 1.0 and the newly obtained values are used as the 
new guesses.  For overrelaxation, a value of OMEF between 1.0 and 2.0 is used 
for the newly obtained values. 

FEMWATER now employs a dynamic relaxation parameter for non-linear 
flow and transport.  What the user specifies in the OMEF field is the starting 
relaxation parameter value.  The actual OMEF value will be adjusted by 
FEMWATER as needed to achieve convergence, as dictated by the OMEMAX, 
OMEMIN, OMEADD, and OMERED values. 

Relaxation parameter for solving linearized flow and transport 
equations (OMIF).  In order to solve the linearized matrix equations using the 
iteration method, an estimate of the solution is needed prior to taking the next 
iteration.  There are three options to estimate the solution based on previous 
guesses and the newly obtained solution: underrelaxation, exact relaxation, and 
overrelaxation.  This is accomplished with an OMIF weighting factor that is 
similar to the OMEF factor described in the previous section. 

Normally OMIF should be set to 1.0.  If the convergence history shows signs 
of oscillation, then a value less than 1.0 should be used.  If the convergence 
history shows a slow but monotonic decrease, OMIF should be set to a value 
between 1.0 and 2.0. 

Upper limit for dynamic non-linear flow and transport relaxation 
parameter (OMEMAX).  FEMWATER will adjust the non-linear flow and 
transport relaxation parameter (OMEF) either upward or downward to help 
achieve convergence as the simulation progresses.  The user specifies the upper 
limit of the range of relaxation parameter values with the OMEMAX card.  
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FEMWATER will not use relaxation parameter values above this limit.  The 
default value for OMEMAX is 1.5.  For backward compatibility, this card is not 
required.  If omitted, the default value will be used. 

Lower limit for dynamic non-linear flow and transport relaxation 
parameter (OMEMIN).  FEMWATER will adjust the non-linear flow and 
transport relaxation parameter (OMEF) either upward or downward to help 
achieve convergence as the simulation progresses.  The user specifies the lower 
limit of the range of relaxation parameter values with the OMEMIN card.  
FEMWATER will not use relaxation parameter values below this limit.  The 
default value for OMEMIN is 0.001.  For backward compatibility, this card is not 
required.  If omitted, the default value will be used. 

Dynamic non-linear flow and transport relaxation parameter increase 
increment (OMEADD).  When FEMWATER determines that the non-linear 
flow and transport relaxation parameter needs to be increased to achieve faster 
convergence, the OMEADD card specifies the amount of increase that is added 
to the current relaxation parameter value.  The default value for OMEADD is 
0.005.  For backward compatibility, this card is not required.  If omitted, the 
default value will be used. 

Dynamic non-linear flow and transport relaxation parameter decrease 
factor (OMERED).  When FEMWATER determines that the non-linear flow 
and transport relaxation parameter needs to be decreased to achieve convergence, 
the OMERED card specifies the reduction factor that is applied to the current 
relaxation parameter value.  This calculation is performed by the equation OMEF 
= OMEF * OMERED, thus this card should have a value between 0.0 and 1.0.  
The default value for OMERED is 0.6667.  For backward compatibility, this card 
is not required.  If omitted, the default value will be used. 

Sorption options (OP4) 

The OP4 card is used to designate which model will be used for the sorption 
isotherm.  The selection of the sorption model should be dictated by experimental 
evidence, and it depends highly on the type of chemicals and subsurface media. 

 
Card Type OP4 
Description Sorption options. 
Required YES 
Format OP4 ksorp 
Sample OP4 1 
Field Variable Value Description 

1 KSORP 1 
2 
3 

Linear isotherm. 
Freundlich isotherm. 
Langmuir isotherm. 

The following three models are available for modeling the sorption isotherm: 
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a.  Linear.  A linear isotherm is used for the adsorption model.  For salinity 
intrusion simulations, a linear model is sufficient. 

b.  Freundlich.  A nonlinear isotherm (Freundlich isotherm) is used for the 
adsorption model. 

c.  Langmuir.  A nonlinear isotherm (Langmuir isotherm) is used for the 
adsorption model. 

Although the Freundlich isotherm option can be used to simulate a linear 
isotherm by setting the value of the exponent (n = 1), it is recommended that the 
linear isotherm be simulated by using only the linear isotherm option.  This is 
because the linear isotherm option makes use of retarded seepage velocities, 
which result in a more accurate solution for the particle tracking scheme than the 
pore velocities used in conjunction with the nonlinear adsorption models.  
Sorption constants for the different isotherm options are entered on the MP5 card 
discussed in Chapter 5. 

Preconditioned conjugate gradient method (OP5) 

The OP5 card is used to provide an estimator for GG in the preconditioned 
conjugate gradient method.  If the OP5 card is not present in the input, GG is not 
read but will be computed by the solver itself.  If the OP5 card is present, GG is 
read and it will be the upper bound of the maximum eigenvalue of the coefficient 
matrix using the preconditioned conjugate gradient method.  The default value is 
1.0. 

 
Card Type OP5 
Description Maximum eigenvalue for preconditioned conjugate gradient method. 
Required NO 
Format OP5 gg 
Sample OP5 1.0 
Field Variable Value Description 

1 GG  Upper bound for eigenvalue. 

Iteration Parameters 

The cards IP1, IP2, and IP3 are used to specify the number of iterations for 
the flow simulation, the transport simulation, and the coupled simulation. 

Flow simulation (IP1) 

The IP1 card is used to specify the number of iterations for solving the flow 
equations, and the number of cycles used to update rainfall-seepage boundary 
conditions, and in determining convergence criteria in both steady-state and 
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transient simulations.  This card is required for both flow-only and coupled 
simulations. 

 
Card Type IP1 
Description Iteration parameters for the flow simulation. 
Required YES 
Format IP1 niterf ncylf npiterf tolaf tolbf 
Sample IP1 40 10 400 0.0001 0.0001 
Field Variable Value Description 

1 NITERF + Number of iterations allowed for solving the nonlinear flow 
equation. 

2 NCYLF + Number of cycles permitted for iterating rainfall seepage 
boundary condition per time-step. 

3 NPITERF + Number of iterations allowed for solving linearized flow 
equations by pointwise iterative solver. 

4 TOLAF + Steady state convergence criterion for flow simulation [L]. 
5 TOLBF + Transient convergence criterion for flow simulation [L]. 
6 IBSPL 0 or 1 Flag (1=on, 0=off) indicating use of B-spline function on soil 

moisture curves in unsaturated zone calculations. 

The following iteration parameters must be designated for the flow 
simulation. 

a.  Number of iterations for solving the nonlinear flow equation, NITERF.  
Normally a value of 40 is necessary for solving the nonlinear flow 
equations.  However, if this number is exceeded, a warning message is 
issued. 

b.  Number of iterations used per time-step to check if rainfall-seepage 
boundary conditions are properly used and converged, NCYLF.  If no 
rainfall-seepage boundary conditions are used, the value should be 1.  
When they are used, a value of 10 should be adequate.  If 10 is not 
adequate for convergence, a warning message is issued and the user 
should increase the number of iterations. 

c.  Number of iterations allowed for solving the linearized flow equation by 
pointwise iterative solver, NPITERF.  A value of 400 is sufficient for 
most problems.  If this number is exceeded and the solution does not 
converge, the program issues a warning message. 

d.  Steady-state convergence criterion for the flow simulation, TOLAF.  
This is the absolute error allowed to determine if a steady-state solution 
has reached convergence for hydraulic heads.  A value of 0.00001 for the 
maximum disturbance is usually sufficient for most problems.  However, 
the user may wish to determine the convergence criterion as part of the 
calibration of model parameters. 

e.  Transient convergence criterion for the flow simulation, TOLBF.  This is 
the absolute error allowed to determine if hydraulic heads have 
converged.  A value of 0.0001 for the maximum disturbance is usually 
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sufficient for most problems. However, the user may wish to determine 
the convergence criterion as part of the calibration of model parameters. 

f.  Use of B-spline function to obtain values for the soil moisture curves in 
unsaturated zone calculations.  When this flag is set (1), FEMWATER 
will fit a B-spline through the points defining the soil moisture curves 
when obtaining value from the curves for the particular negative pressure 
head computed.  This will guarantee smooth curves with no sharp breaks 
in slope.  Convergence times can be reduced by up to 20% using this 
option.   

Transport simulation (IP2) 

The IP2 card is used to specify the number of iterations for solving the 
transport equation, the transport equation by pointwise solver, and convergence 
criteria for transient transport simulations.  This card is required for both 
transport only and coupled simulations. 

 
Card Type IP2 
Description Iteration parameters for the transport simulation. 
Required YES 
Format IP2 nitert npitert tolbt 
Sample IP2 40 10 400 0.001 
Field Variable Value Description 

1 NITERT + Number of iterations allowed for solving the nonlinear transport 
equation. 

2 NPITERT + Number of iterations allowed for solving linearized transport 
equation. 

3 TOLBT + Transient convergence criterion for transport simulation [M/L3]. 

The following iteration parameters must be designated for transport 
simulations. 

a.  Number of iterations allowed for solving the nonlinear transport 
equation, NITERT.  Normally, a value of 40 is sufficient.  If this number 
is exceeded and the solution does not converge, a warning message is 
displayed. 

b.  Number of iterations allowed for solving the linearized transport 
equation, NPITERT.  Normally, a value of 400 is sufficient for solving 
the linearized transport equation with the successive point iterative 
solver.  Exceeding this number will indicate a nonconvergent solution 
and cause a message to be displayed.  When this occurs, a larger value 
should be used. 

c.  Transient convergence criterion for transport simulation, TOLBT.  This 
is the relative error for determining if concentrations have converged 
during transient simulations.  A value of 0.001 is recommended. 
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Coupled simulation (IP3) 

The IP3 card is used to specify number of iterations used in solving the 
coupled flow and transport equations.  This card is used in addition to the IP1 
and IP2 cards. 

 
Card Type IP3 
Description Iteration parameters for the coupled simulation. 
Required YES 
Format IP3 nitfit omeftt epss epst 
Sample IP3 10 0.5 0.01 0.05 
Field Variable Value Description 

1 NITFIT + Number of iterations allowed for solving the coupled nonlinear 
equations for transient solutions. 

2 OMEFTT + Iteration parameter for solving the coupled nonlinear equations 
for transient solutions. 

3 EPSS + Convergence criterion for head for solving the coupled 
nonlinear equations for transient solutions [L]. 

4 EPST + Convergence criterion for concentration for solving the coupled 
nonlinear equations for transient solutions [M/L3]. 

The following iteration parameters must be designated for coupled 
simulation. 

a.  Number of iterations allowed for solving the coupled nonlinear equations 
for transient solutions, NITFTT.  Normally, a value of 10 should be 
sufficient.  If this number is exceeded and the solution does not 
converge, a warning message will be issued. 

b.  Iteration parameter for solving the coupled nonlinear equations for 
transient solutions, OMEFTT.  This parameter is the weighting factor 
used with the present and previous results for solving the coupled 
nonlinear equation of the transient solution.  A value of 0.5 should be 
used for most problems. 

c.  Convergence criterion for head for solving the coupled nonlinear 
equations for transient solutions, EPSS.  This is the absolute error 
allowed for determining if a coupled flow and transport solution for 
hydraulic head has converged.  A value of 0.01 for the maximum 
disturbance should be sufficient. 

d.  Convergence criterion for concentration for solving the coupled 
nonlinear equations for transient solutions, EPST.  This is the relative 
error allowed for determining if a coupled flow and transport solution for 
concentration has converged.  A value of 0.05 for the maximum 
disturbance should be sufficient. 
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Particle Tracking Parameters 

In order to simulate the advective transport of particles through the model 
domain, FEMWATER employs a particle tracking technique.  Particle tracking, 
as its name implies, is a means of using numerical results to track fictitious 
individual particles across a numerical model mesh, approximating the advection 
of the contaminant front.  In order to accurately track particles over large 
elements with large velocity gradients, it sometimes necessary to subdivide the 
individual elements into smaller subelements. 

 
Card Type PT1 
Description Particle tracking parameters. 
Required YES 
Format PT1 nxw nyw nzw idetq 
Sample PT1 1 1 1 1 
Field Variable Value Description 

1 NXW + The number of grids for element tracking in the x-direction. 
2 NYW + The number of grids for element tracking in the y-direction. 
3 NZW + The number of grids for element tracking in the z-direction. 
4 IDETQ  

1 
2 

Index of particle tracking pattern. 
  Average velocity is used. 
  Single velocity of the starting point is used. 

The particle tracking parameters are entered on the PT1 card.  The following 
parameters must be specified: 

a.  The number of grids for element tracking in the x-direction, NXW.  This 
parameter specifies how many subelements are needed in the x-direction.  
The higher the velocity variation in the x-direction, the more 
subelements are needed. 

b.  The number of grids for element tracking in the y-direction, NYW.  This 
parameter specifies how many subelements are needed in the y-direction.  
The higher the velocity variation in the y-direction, the more 
subelements are needed. 

c.  The number of grids for element tracking in the z-direction, NZW.  This 
parameter specifies how many subelements are needed in the z-direction.  
The higher the velocity variation in the z-direction, the more subelements 
are needed. 

d.  The particle tracking pattern, IDETQ.  Two options are available: 

(1)  Average velocity is used (IDETQ=1).  The use of average velocity is 
more accurate, and it requires fewer subelements. 

(2)  Single velocity of the starting point is used (IDETQ=2).  This option 
should be used when the velocity pattern is so complicated that the 
use of the average velocity would fail to locate a fictitious particle.  
It should be used when a quick tracking is needed. 
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Time Control Parameters 

The TC1 and TC2 cards are used to specify the total simulation time and the 
time-step interval. 

Maximum simulation time (TC1) 

This is actual length of time to be simulated.  Once the simulation time 
reaches the maximum simulation time, the simulation will be terminated.  In 
steady-state simulations, this parameter is ignored. 

 
Card Type TC1 
Description Maximum simulation time. 
Required YES 
Format TC1 tmax 
Sample TC1 1000 
Field Variable Value Description 

1 TMAX + The maximum simulation time [T]. 

Time-step interval (TC2) 

The computational time-step can be specified either as a constant value or a 
series of time-step sizes.  The variable time-step should be used when the 
boundary conditions are changing rapidly. 

 
Card Type TC2 
Description Time-step size. 
Required YES 
Format TC2 idt delt/idtxy 
Sample TC2 0 1.0 
Field Variable Value Description 

1 IDT  
0 
1 

Time-step type. 
  Constant. 
  Variable. 

2 DELT 
IDTXY 

+ 
+ 

If IDT=0, constant time-step. 
If IDT=1, index of xy card for variable time-step values.  The 
x values in the series represent times at which the time-step 
size will change. The y values represent the time-step sizes. 

The variable time-step option in FEMWATER is defined by specifying both 
the time-step length and the time-step values at which these lengths occur.  This 
is specified using an XY Series card (XY1) described in the next section.  An 
example specification of these two parameters is given in Table 3.  The resulting 
time-steps that this specification will produce in FEMWATER are given in Table 
4.  Note that in a transient FEMWATER simulation a time-step value of zero 
represents the initial conditions specified for the simulation and is saved by 
default to the resulting output files.  The value of the first computational time-
step will be determined by the specified length.  The time-step values specified in 



 

34  Chapter 4 Analysis Options 

the first column of Table 3 indicate the time-steps to which the corresponding 
time-step lengths in the second column of Table 3 are valid.  In other words, one 
can read the two columns of data in Table 3 as, “until time-step X, the time-step 
lengths will be Y”, etc. until the maximum simulation time is reached. 

 
Table 3 
Time-Step Interval Specification 
Time-Step Value Time-Step Length 
10 2 
20 5 
50 10 

 

 

 

Table 4 
Resulting Time-Step Lengths 
Time-Step Δt 
2 2 
4 2 
6 2 
8 2 
10 2 
15 5 
20 5 
30 10 
40 10 
50 10 

The XY Series format (XY1) 

The TC2 card in the previous section uses the XY Series format (XY1 card) 
to specify how the time-step size changes with time.  The XY1 card is used by 
many of the FEMWATER input cards as a consistent means of designating a list 
of pairs of numbers.  This can be thought of as the x- and y-coordinates of a 
curve, although the values do not necessarily have to correspond to a curve.  In 
many cases, the x-value represents a time and the y-value represents some 
parameter that is changing with time.  However, the series can represent any 
relationship.  Each XY1 card has an index that is referenced by other cards.  XY1 
cards can appear anywhere in the input file and are often listed at the end of the 
file.  

 
Card Type XY1 
Description XY Series.  Used to define a sequence of pairs of numbers. 
Required YES 
Format XY1 i n dx dy rep begc tname 

x1 y1 
x2 y2 
. 
. 
xn yn 

Sample XY1 1 5 0 0 0 0 head  
4.0 0.0 
4.1 2.0 
4.2 7.0 
4.3 8.0 
4.4 9.5 

Field Variable Value Description 
1 I + Index of xy series. 
2 N + The number of xy pairs in the series. 
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3 DX  Value is ignored by FEMWATER. 
4 DY  Value is ignored by FEMWATER. 
5 REP  Value is ignored by FEMWATER. 
6 BEGC  Value is ignored by FEMWATER. 
7 TNAME text A character string representing the name of the XY series. 
8 X,Y ±, ± After the XY1 card, the xy values of the series are listed, one 

pair per line, up to N pairs. 

Output Control Parameters 

There are two basic types of output generated by FEMWATER.  The first 
type consists of printed text output summarizing the input data, the progress of 
the simulation (convergence criteria, etc.), and a summary of the results.  This 
type of output is printed to the screen and to the printed output file described in 
Chapter 2.  The other type of output consists of a series of binary or text solution 
files that can be used for graphical post-processing.  The format of the solution 
files is described in Appendix C.  The output control card group (OC1, OC2, 
OC3, and OC4) is used to specify what information is to be written to the printed 
output file and saved to the solution files.  The cards also control the interval at 
which the output is printed or saved. 

Print interval (OC1) 

The OC1 card controls the frequency at which data are written to the printed 
output file and whether or not diagnostic output and the cyclic change of rainfall 
seepage nodes are printed. 

 
Card Type OC1 
Description Interval for writing to printed output file. 
Required YES 
Format OC1 ibug ichng jopt kprt/nprint 
Sample OC1 0 0 0 1  /* Print at every time-step */ 

 
OC1 0 0 1 5  /* Print at specified times */ 
1.0 
2.0 
4.0 
8.0 
16.0 

Field Variable Value Description 
1 IBUG 0 

1 
Do not print diagnostic output. 
Print diagnostic output. 

2 ICHNG 0 
1 

Do not print cyclic change of rainfall/seep. nodes. 
Print cyclic change of rainfall/seep. nodes. 

3 JOPT 0 
1 

Print at specified interval. 
Print at specified set of time values. 

4 KPRT 
KPRINT 

+ 
+ 

Print interval if JOPT=0, or 
Total number of specified times if JOPT=1. 

5  + If JOPT=1, after the OC1 card, list the specified print 
times, one per line, up to KPRINT times. 
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Diagnostic output (IBUG).  The integer, IBUG, is an indicator for 
diagnostic output control.  The diagnostic output will help users locate errors in 
the input data. 

Cyclic change of rainfall-seepage nodes (ICHNG).  The integer, ICHNG, 
is an indicator for controlling the printout of the convergence behavior at rainfall-
seepage nodes. 

Print frequency (JOPT).  The information that is written to the printed 
output file can either be written out at a regular interval or at a specified set of 
time values.  The time values in the specified set of time values should 
correspond to computational time-steps. 

Print options (OC2) 

The OC2 card is used to specify what information is written to the printed 
output file.  The information is written at the interval specified in the OC1 card. 

 
Card Type OC2 
Description Options for writing to printed output file. 
Required YES 
Format OC2 nselt kpro(i) 
Sample OC2 3 1 4 7 
Field Variable Value Description 

1 NSELT + Total number of print options selected.  This field should 
by followed by NSELT values, each of which ranges from 
0-7 as explained below. 

2+ KPRO(I) 0 
1 
2 
3 
4 
5 
6 
7 

Print nothing. 
Print flow and/or mass information at the boundary. 
Print total head. 
Print pressure head. 
Print concentration. 
Print flux. 
Print nodal moisture content. 
Print Darcy velocity. 

The following items can be printed: 

a.  Flow and/or mass information at the boundary.  The rate of change, 
incremental, and total fluid and/or mass flow through the boundary are 
printed (depending on whether simulation is flow only, transport only or 
coupled flow and transport). 

b.  Total head.  The total head at each node is printed. 

c.  Pressure head.  The pressure head at each node is printed. 

d.  Concentration.  The concentration at each node is printed. 

e.  Flux.  The flux at each node is printed. 
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f.  Moisture content.  The moisture content at each node is printed. 

g.  Darcy velocity.  The Darcy velocity is printed at each node. 

Save interval (OC3) 

The OC3 card controls the frequency at which the computed solution is 
saved to output files for post-processing.  The solution can be saved at a regular 
interval or at a specified set of time values.  The time values in the specified set 
of time values should correspond to computational time-steps. 

The OC3 is also used to specify whether the files should be saved in text or 
binary format.  The binary format results in much smaller file sizes, an issue 
which may be very important when running transient analyses on large meshes.  
The text format requires more disk space, but it can be viewed with a text editor 
and transferred between different computer platforms.  Binary files, however, 
cannot be transferred between different computer platforms. 

 
Card Type OC3 
Description Interval for saving solution files for post-processing. 
Required YES 
Format OC3 ifile kopt kdsk/npost 
Sample OC3 0 0 1   /* Save at every time-step */ 

 
OC3 0 1 5   /* Save at specified times */ 
1.0 
2.0 
4.0 
8.0 
16.0 

Field Variable Value Description 
1 IFILE 0 

1 
Save in text format. 
Save in binary format. 

2 KOPT 0 
1 

Save at specified interval. 
Save at specified set of time values. 

3 KDSK 
KPOST 

+ 
+ 

Save interval if KOPT=0, or 
Total number of specified times if KOPT=1. 

4+  + If KOPT=1, after the OC3 card, list the specified save 
times, one per line, up to KPOST times. 

Save options (OC4) 

The OC4 card is used to specify what information is saved to the solution 
files for post-processing or for use as initial conditions for subsequent 
simulations.  Each set of information is written to a separate file, which is either 
binary or text depending on the option selected in the OC3 card.  The formats of 
the solution files are described in Appendix C.  The solutions are saved one time-
step at a time at the interval specified in the OC3 card.  At each time-step, one 
value is written for each node. 
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Card Type OC4 
Description Options for saving solution files for post-processing. 
Required YES 
Format OC4 kselt ksave(i) 
Sample OC4 4 1 2 3 4 
Field Variable Value Description 

1 KSELT + Total number of solution files selected.  This field should 
be followed by KSELT values, each of which ranges from 
0-5 as explained below. 

2+ KSAVE(I) 0 
1 
2 
3 
4 
5 

Save nothing. 
Save pressure head. 
Save nodal boundary fluid flux. 
Save nodal moisture content. 
Save velocity. 
Save concentration. 

The following types of solution files can be saved: 

a.  Pressure head. 

b.  Nodal boundary fluid flux.  Flux values at nodes without boundary 
conditions or point source/sinks assigned will be zero. 

c.  Nodal moisture content computed at nodes as an average of surrounding 
elements. 

d.  Darcy velocity. 

e.  Concentration. 
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5 Material Properties 
 

Introduction 

The second of the four primary groups of information in the model file is the 
material properties.  The material properties include fluid properties and soil 
properties.  One set of fluid properties is defined for the entire mesh, and one set 
of soil properties is defined for each of the soil or aquifer types referenced by the 
element material ID’s. 

File Format 

The set of cards in the model file corresponding to material properties is 
shown in Figure 5. 

. 
MP1 kcp  /* Cond. Or perm. Flag*/ 
MP2 i kxx kxy kz kxy kxz kyz alpha por  /* Cond. Or perm. Values */ 
MP3 rho visc grav betap  /* Dens. And visc. Of water */ 
MP4 a1 a2 a3 a4 a5 a6 a7 a8  /* Dens. And visc. Coeff.s */ 
MP5 I k gamma al at am t decay n deckw decks  /* Disp./diffusion coeff.s */ 
SP1 I ihm ihc ihw  /* Soil prop.For unsat. zone */ 
. 

Figure 5.  The material properties cards in the model file 

Fluid Properties 

The fluid property cards input to the model file are used to specify the 
density, the viscosity and the compressibility of fluid, and the acceleration of 
gravity. The acceleration of gravity is not a fluid property, but it is input on the 
same line as the density and viscosity for convenience.  Specifying the 
acceleration of gravity allows the user to use any desired units for the fluid 
properties, soil properties, and all other parameters input to FEMWATER.  All 
parameters should be consistent with the units of the specified acceleration of 
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l

gravity.  For example, if the gravity constant is specified in units of m/day2, all 
length units, including mesh coordinates, must be in meters and all time units, 
including time-step data, must be specified in units of days. However, since the 
most common mass concentration unit used in groundwater is milligrams per liter 
(mg/ ) in SI units, the concentrations in FEMWATER should be specified in 
units of mg/ l (ppm). 

FEMWATER can be used to model density-driven flow and transport.  Thus, 
relationships must be defined between concentration, density, and viscosity.  The 
relationships used by FEMWATER are: 

ρ
ρo

a a C a C a C= + + +1 2 3
2

4
3  (31) 

and 

μ
μo

a a C a C a C= + + +5 6 7
2

8
3  (32) 

where 

ρo, μo = density and viscosity of fresh water 

a1…a8 = parameters used to define concentration dependence of water 
density and viscosity 

C = chemical concentration 

Thus, values of ρo, μo, and a1…a8 must be specified by the user. 

Density, viscosity and compressibility of fresh water and 
acceleration of gravity (MP3) 

The density, viscosity, and compressibility of fresh water , ρo, μo, β, and the 
acceleration of gravity are specified with the MP3 card.  Note that FEMWATER 
requires the user to enter the compressibility of fresh water, not the modified 
compressibility term used in Equation (2).  Modified compressibility is computed 
by FEMWATER according to Equation (A23).  Typically the compressibility of 
water is a small number, generally on the order of 10-15 - 10-17, depending on the 
units used.  Note that the units of compressibility are LT2/M.  Compressibility 
values are sometimes given in English units of ft2/lb. The reader is reminded that 
when using English units, pounds are units of force, not mass and the appropriate 
conversion to slugs must be made.  As with all parameters in FEMWATER, it 
falls to the user to ensure that all values are specified in units consistent with the 
model dimensions of length, mass and time. 
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Card Type MP3 
Description Density, viscosity and compressibility of fresh water. 
Required YES 
Format MP3 rho visc grav beta 
Sample MP3 1000.0 4.68 1.3e+8  0.0 
Field Variable Value Description 

1 RHO + Density of fresh water [M/L3]. 
2 VISC + Dynamic viscosity of water [M/L2/T]. 
3 GRAV + Acceleration of gravity [L/T2]. 
4 BETA + Compressibility of water [LT2/M]. 

Concentration dependence coefficients (MP4) 

The coefficients, a1…a8, which are used to define the concentration 
dependence of water density and viscosity, are specified with the MP4 card.  The 
parameters a1 and a5 should always set to 1.0  and for density-independent flow 
the parameters a2, a3, a4, a6, a7, and a8 should also be set to zero. 

For density-dependent flow, some or all of the parameters a2-a4 and a6-a8 
should be nonzero.  For example, typical salt water has a salt concentration of 
around 1 kilogram per liter (1000 ppt).  For a first-order density-dependent 
relationship, the parameter a1 is set to 1.0, a2 is set to 0.001 (the inverse units of 
concentration), and the parameters a3 and a4 are set to zero. 

 
Card Type MP4 
Description Concentration dependence coefficients. 
Required YES 
Format MP4 a1 a2 a3 a4 a5 a6 a7 a8 
Sample MP4 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 
Field Variable Value Description 

1 RHOMU(1) 1 Coefficient a1. 
2 RHOMU(2) ± Coefficient a2.  The units are the inverse of concentration 

units. 
3 RHOMU(3) ± Coefficient a3.  The units are the inverse of concentration 

units squared. 
4 RHOMU(4) ± Coefficient a4.  The units are the inverse of concentration 

units cubed. 
5 RHOMU(5) 1 Coefficient a5. 
6 RHOMU(6) ± Coefficient a6.  The units are the inverse of concentration 

units squared. 
7 RHOMU(7) ± Coefficient a7.  The units are the inverse of concentration 

units cubed. 
8 RHOMU(8) ± Coefficient a8. 

Soil Properties 

Each element in the mesh is assigned a material corresponding to the zone or 
aquifer in which the element is located.  The material ID is an index to a list of 
soil properties.  The list of soil properties is input to the model file.  The soil 
properties that must be specified are hydraulic conductivity, compressibility, 
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dispersion, diffusion, radioactive decay coefficient, the first order biodegradation 
rate of dissolved and absorbed phase, and three water retention curves describing 
how moisture content, relative conductivity, and water capacity vary with 
pressure head in the unsaturated zone. 

Hydraulic conductivity (MP1, MP2) 

The hydraulic conductivity for each soil type is specified using the MP1 and 
MP2 cards.  The MP1 card is used to specify whether the conductivity values 
should be interpreted as hydraulic conductivity or as permeability. 

 
Card Type MP1 
Description Hydraulic conductivity versus permeability. 
Required YES 
Format MP1 kcp 
Sample MP1 0 
Field Variable Value Description 

1 KCP 0 
1 

Hydraulic conductivity. 
Permeability. 

 
The hydraulic conductivity K is a symmetric tensor of second order.  It 

relates the flux F to the gradient of total head, H, in a rectangular system (x,y,z) 
as 

 

Fx = - ( Kxx
∂
∂
H
x

  +  Kxy 
∂
∂
H
y

  +  Kxz
∂
∂
H
z

 ) 

Fy = - ( Kyx
∂
∂
H
x

  +  Kyy
∂
∂
H
y

  +  Kyz
∂
∂
H
z

 )   (33) 

Fz = - ( Kzx
∂
∂
H
x

  +  Kzy
∂
∂
H
y

  +  Kzz
∂
∂
H
z

 ) 

 
Since the tensor is symmetric, a coordinate system (ξ,ψ,ζ) can be found such that 
(Long 1961): 
 

Fξ =  - Kξξ
∂
∂ξ
H

 

Fψ = - Kψψ
∂
∂ψ
H

       (34) 

Fζ = - Kζζ
∂
∂ζ
H
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Therefore, the hydraulic conductivity tensor K′ in the (ξ,ψ,ζ) coordinate 
system can be written as  
 

K =     K′ =   (35) 
K K K
K K K
K K K

xx xy xz

yx yy yz

zx zy zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

K
K

K

ξξ

ψψ

ζζ

0 0
0 0
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 
The transformation of K between the coordinate system (ξ,ψ,ζ) and (x,y,z) 
is given as follows. 
 

Let θ, φ, and ϕ be the Euler angles between the (ξ,ψ,ζ) and (x,y,z) 
coordinates: θ is the angle between the ζ- and z-axis on the plane perpendicular 
to the y-axis, φ is the angle between ξ and x-axis on the plane perpendicular to z-
axis, and ϕ is the third angle (Morse and Feshbach 1978).  The relationship 
between (x,y,z) and (ξ,ψ,ζ) is given by 
 

x
y
z

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
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 =          (36) 
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⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 
in which  
 

α1  =  sinϕ  sinφ  +  cosϕ  cosφ  cosθ  
α2  =  cosϕ  sinφ  -  sinϕ  cosφ  cosθ  
α3  =  cos φ  cosθ 
β1  =  sin ϕ  cosφ  -  sinϕ  sinφ  cosθ  
β2  =  cosϕ  cosφ  +  sinϕ  sinφ  cosθ  
β3  =  -sinφ  sinθ  
γ1  =  -cosϕ sinθ  
γ2  =  sinϕ  sinθ  
γ3  =  cosθ  

 
where α’s, β’s, and γ’s are the directional cosines between two coordinate 
systems.  These directional cosines are symmetrical with respect to the two 
coordinate systems.  The transformation of the flux vector between two 
coordinate systems is similar to that between the coordinates, i.e., 
 

F
F
F

x

y

z

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

  =   
α
β
γ

1

1

1

⎡

⎣

⎢
⎢
⎢

α
β
γ

2

2

2

      (37) 
α
β
γ

3

3

3

⎤

⎦

⎥
⎥
⎥

F
F
F

ξ

ψ

ζ

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
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Substituting Equations (33) and (34) into Equation (37) gives 
 

K K K
K K K
K K K

xx xy xz

yx yy yz

zx zy zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂
∂
∂
∂
∂
∂

H
x
H
y
H
z

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

=  
α
β
γ

1

1

1

⎡

⎣

⎢
⎢
⎢

α
β
γ

2

2

2

 
α
β
γ

3

3

3

⎤

⎦

⎥
⎥
⎥

K
K

K

ξξ

ψψ

ζζ

0 0
0
0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0

∂
∂ξ
∂
∂ψ
∂
∂ζ

H

H

H

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

 (38) 

 
By the chain rule, 
 

∂
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∂
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∂
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∂
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y

y
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∂
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z

z
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⎤
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∂
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z

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
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    (39) 

 
The Jacobian can be obtained from Equation (37): 
 

∂
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∂
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x

x

x

⎡
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⎢
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⎥
⎥
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α
α

1

2

3

⎡

⎣

⎢
⎢
⎢

β
β
β

1

2
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     (40) 
γ
γ
γ

1

2

3

⎤

⎦

⎥
⎥
⎥

 
Substituting Equation (40) into Equation (39), then the resulting equation into 
Equation (38) gives 
 

K K K
K K K
K K K

xx xy xz

yx yy yz

zx zy zz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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=    
α
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γ

1

1

1

⎡

⎣

⎢
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2

2

2

α
β
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3

3

3

⎤

⎦

⎥
⎥
⎥

K 0 0
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0 0 K
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ψψ
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⎡

⎣

⎢
⎢
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⎤

⎦

⎥
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α
α
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1

2
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⎡
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β
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  (41) 
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γ
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⎥
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⎥

 
Relabeling the directional cosines in Equation (41) gives  
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Kxx xy xz

yx yy yz

zx zy zz

K K
K K K
K K K

⎡
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⎢

⎤

⎦
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γ
γ
γ

11

12

13

⎡

⎣

⎢
⎢
⎢

γ
γ
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   (42) 
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γ
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0 K 0
0 0 K

ξξ

ψψ

ζζ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

γ
γ
γ
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⎡

⎣

⎢
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⎢

γ
γ
γ

12

22

32

γ
γ
γ

13

23

33

⎤

⎦

⎥
⎥
⎥

 
in which  
 

γ11  =  sinϕ sinφ  +  cosϕ cosφ cosθ  
γ12  =  sinϕ cosφ  -  cosϕ sinφ cosθ  
γ13  =  -cosϕ sinθ 
γ21 =  cosϕ sinφ  -  sinϕ cosφ cosθ  
γ22  =  cosϕ cosφ  +  sinϕ sinφ cosθ  
γ23  =  sinϕ sin θ  
γ31  =  sinθ cosφ  
γ32  =  -sinθ sinφ  
γ33  =  cosθ  

 
Finally the working equations to compute the hydraulic conductivity components 
in the (x,y,z) coordinate are given by the following equation, when the principal 
components in the (ξ,ψ,ζ) coordinate and the three Euler angles between the 
(x,y,z) and (ξ,ψ,ζ) coordinates are known: 
 

Kxx =   Kξξ  +   Kψψ  +   Kζζ   γ 11
2 γ 21

2 γ 31
2

Kxy =  γ 11 γ 12  Kξξ  +  γ 21 γ 22  Kψψ  +  γ 31 γ 32  Kζζ 
Kxz =  γ 11 γ 13  Kξξ  +  γ 21 γ 23  Kψψ  +  γ 31 γ 33  Kζζ 
Kyx =  γ 12 γ 11  Kξξ  +  γ 22 γ 21  Kψψ  +  γ 32 γ 31  Kζζ 
Kyy =   Kξξ  +   Kψψ  +   Kζζ     (43) γ 12

2 γ 22
2 γ 32

2

Kyz =  γ 12 γ 13  Kξξ  +  γ 22 γ 23  Kψψ  +  γ 32 γ 33  Kζζ 
Kzx =  γ 13 γ 11  Kξξ  +  γ 23 γ 21  Kψψ  +  γ 3 3 γ 31  Kζζ 
Kzy =  γ 13 γ 12  Kξξ  +  γ 23 γ 22  Kψψ  +  γ 3 3

γ 32  Kζζ 
Kzz =   Kξξ  +   Kψψ  +   Kζζ γ 13

2 γ 23
2 γ 33

2

 
For anisotropic cases, the three principal components should not all be equal, 

i.e., Kξξ  Kψψ  Kζζ.  The nine components of hydraulic conductivity tensor in 
the (x,y,z) coordinate system must be computed given the three principal 
components and three Euler angles.  

≠ ≠

 
a. For isotropic cases, the three principal components should be all equal, 

i.e., Kxx = Kyy = Kzz = K.  All off-diagonal terms of the hydraulic 
conductivity tensor must be zero no matter what coordinate system is 
used. 
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b. For horizontal isotropic cases, all off-diagonal terms must be zero, Kxx 
and Kyy must be equal to K, and Kzz must be different from K. 

 
c. For the vertical isotropic cases, all off-diagonal terms must be zero, Kyy 

and Kzz must be equal to K, and Kxx must be different from K. 

The hydraulic conductivity values, and compressibility, α, of the medium are 
entered on the MP2 card. The K values should correspond to either hydraulic 
conductivity or permeability depending on the status of the KCP variable on the 
MP1 card.  Note that as with the compressibility of the fluid, FEMWATER 
requires the user to enter the compressibility of the medium, not the modified 
compressibility used to determine the storage coefficient in Equation (2).  
Modified compressibilty is obtained from Equation (A22) by multiplying the 
user-specified density and gravity values by the compressibility value entered 
here.  Soil compressibility values are also typically quite small, on the order of 
10-15 – 10-17, depending on the units of the simulation.  The reader is again 
reminded that when using reported compressibility values in English units, these 
are often given in units of ft2/lb.  FEMWATER requires compressibility to be 
entered in units of LT2/M.  Since pounds are units of force, they must first be 
converted to slugs (units of mass).  It is the responsibility of the user to ensure 
that all values used in a simulation are in consistent units of length, mass and 
time. 

The user may also note that porosity is used in Equation (2).  Here, 
“porosity” means total porosity and is defined according to Equation (A9) in 
Appendix A.  At fully saturated conditions, total porosity is equal to moisture 
content thus the porosity value on the MP2 card should be the same as the 
appropriate value on the moisture content vs. pressure head curve (see the section 
on the SP1 card later in this chapter). 
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Card Type MP2 
Description Hydraulic conductivity tensor and soil compressibility and porosity. 
Required YES 
Format MP2 I kxx kyy kzz kxy kxz kyz alpha por 
Sample MP1 10 0.003 0.003 0.003 0.0 0.0 0.0 0.0 0.0 
Field Variable Value Description 

I I + Material ID. 
Kxx PROPF(1,I) + Saturated xx hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
Kyy PROPF(2,I) + Saturated yy hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
Kzz PROPF(3,I) + Saturated zz hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
Kxy PROPF(4,I) + Saturated xy hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
Kxz PROPF(5,I) + Saturated xz hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
Kyz PROPF(6,I) + Saturated yz hydraulic conductivity  [L/T], or saturated 

permeability [L2] of the medium i. 
ALPHA PROPF(7,I) + The compressibility of the medium i [LT2/M]. 

POR PROPF(8,I) + The total porosity of the medium i [dimensionless]. 

Dispersion/diffusion coefficients (MP5) 

The MP5 card is used to specify the bulk density, the parameters required to 
define the isotherm relationship, the dispersion coefficients, the tortuosity, 
radioactive decay constant, and the first-order biodegradation rate constants for 
the dissolved and adsorbed phases for each soil type. 

 
Card Type MP5 
Description Dispersion/diffusion coefficients. 
Required YES 
Format MP5 i k gamma al at am t decay n deckw decks 
Sample MP5 10 0.0 1200.0 5.0 5.0 0.0 1.0 0.0 0.0 0.0  0.0 
Field Variable Value Description 

i I + Material type ID. 
k PROPT(1,I) + Distribution coefficient, Kd, Freundlich K, or Langmuir K for 

medium i [L3/M]. 
gamma PROPT(2,I) + Bulk density for medium i [M/L3]. 

al PROPT(3,I) + Longitudinal dispersion for medium i [L]. 
at PROPT(4,I) + Transverse dispersion for medium i [L]. 

am PROPT(5,I) + Molecular diffusion coefficient for medium i [L2/T]. 
t PROPT(6,I) + Tortuosity for medium i [dimensionless]. 

decay PROPT(7,I) + Radioactive decay constant for medium i [1/T]. 
n PROPT(8,I) + Freundlich n or Langmuir Smax for medium i 

[dimensionless]. 
deckw PROPT(11,I) + The first-order biodegradation rate constant through 

dissolved phase for medium i [1/T]. 
decks PROPT(12,I) + The first-order biodegradation rate constant through 

adsorbed phase for medium i [1/T]. 
fm PROPT(13,I) + The ratio of effective to total porosity, ne/n [dimensionless]. 



 

Chapter 5 Material Properties  49 

The density is specified as a bulk density, in units of [M/L3].  The bulk 
density of a soil corresponds to its oven-dried mass divided by its in situ volume. 

The isotherm is used to define a relationship between the amount of 
contaminant adsorbed by the soil, S (mass of contaminant / mass of soil) and the 
concentration of the contaminant, C.  Three types of isotherms can be used in 
FEMWATER: 

a. Linear isotherm: 

S K Cd=  (44) 

b. Langmuir isotherm: 

S
S KC

KC
=

+
max

1
 (45) 

c. Freundlich isotherm: 

S KCn=  (46) 

where 

Kd = distribution coefficient [L3/M] 

Smax = maximum concentration of medium in the Langmuir nonlinear 
isotherm 

K = coefficient in the Langmuir or Freundlich isotherm 

n = power index in the Freundlich nonlinear isotherm. 

Note that a linear isotherm can be obtained using Equation (44) by setting n 
equal to 1.  The type of isotherm to be used is specified with the KSORP variable 
on the OP3 card.  However, one set of coefficients, Kd, Smax, K, and n, is 
specified for each material type on the MP5 card. 

Diffusion and dispersion are modeled in FEMWATER using the following 
relationship: 

θD V
VV
V

= + − +a a a aT L T mδ ( ) θτδ  (47) 
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where 

θ = moisture content 

D = dispersion coefficient tensor 

aT = transverse dispersion [L] 

δ = Kronecker delta tensor 

|V| = the magnitude of the Darcy velocity V [L/T] 

aL = longitudinal dispersion [L] 

am = molecular diffusion coefficient [L2/T] 

τ = tortuosity 

Thus, the parameters, aT, aL, am, and t must be specified by the user.  They can be 
obtained by experiment or literature review. 

A radioactive decay constant, λ [1/T], may be specified for each material if 
the contaminant decays according to radioactive decay behavior.  First-order 
biodegredation of the contaminant can also be simulated by entering 
biodegradation constants for both the dissolved and adsorbed phases of the 
contaminant in each material.   

FEMWATER v3.0 now includes the ability to specify effective porosity for 
use in the transport calculations separately from the total porosity specified on 
the moisture content curve.  Effective porosity is defined as the ratio of 
interconnected pore space to the total soil volume, or in other words, the ratio of 
pore space that is available for flow and transport.  For some media, effective 
porosity can be greater than one order of magnitude smaller than total porosity.  
FEMWATER requires that the user input the ratio of effective to total porosity, 
ne/n.  If this parameter is omitted, the ratio is assumed to be 1 and the same value 
for both total and effective porosity will be used for all calculations. 

Soil properties for unsaturated zone (SP1) 

The final set of parameters that must be specified for each medium is a 
sequence of three curves defining how the moisture content, relative 
conductivity, and water capacity vary as a function of pressure head in the 
unsaturated zone. 

 
Card Type SP1 
Description Soil properties for unsaturated zone. 
Required YES 
Format SP1 i ihm, ihc, ihw 
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Sample SP1 10 3 4 5 
Field Variable Value Description 

1 I + Material type index. 
2 IHM(I) + Index of moisture content versus pressure head XY series. 
3 IHC(I) + Index of relative conductivity versus pressure head XY series. 
4 IHW(I) + Index of water capacity versus pressure head XY series. 

Relative conductivity.  The governing equation for flow of water through a 
variably saturated porous medium has effective hydraulic conductivity and 
storage terms.  The effective hydraulic conductivity can be rewritten as the 
product of nonlinear and constant terms in the form: 

( )K h K Kr S=  (48) 

where Kr is the relative conductivity, ranging in value from 0.0 to 1.0, and KS is 
the saturated hydraulic conductivity.  The change of relative hydraulic 
conductivity is caused by changes in moisture content, resulting in the 
preferential movement of water through certain pathways, due to the influence of 
capillary forces.  As the soil becomes less saturated, the flow of water becomes 
restricted to the pore sequences of smaller radii.  This results in a reduction in the 
spatially averaged effective hydraulic conductivity. 

Moisture content.  Moisture content in the unsaturated zone is a function of 
the pressure head.  The more negative the pressure head, the lower the moisture 
content.  The curve defining the relationship between moisture content and 
pressure head should vary between the saturated moisture content, θs, and the 
residual moisture content, θr.  The saturated moisture content is equal to the total 
porosity of the medium since all of the void space is filled with fluid and as 
mentioned previously, FEMWATER uses this value in all flow calculations 
where porosity is required.  Effective porosity can be entered separately for use 
in transport calculations.  See the section on the MP5 card in this chapter for 
further details on how to specify effective porosity.  Under unsaturated 
conditions some of the void space is filled with air; thus, the moisture content is 
less than the medium’s porosity and this curve is used to define how moisture 
content varies with negative pressure head.  The residual moisture content 
represents the amount of water that cannot be removed from a soil by gravity 
drainage (even under large suction pressure) because it adheres to the grains of 
the soil. 

Water capacity.  The water capacity curve is equal to the slope of the 
moisture content versus pressure head curve.  Although this curve could be 
determined automatically by FEMWATER from the moisture content curve, it is 
input by the user to avoid errors resulting from the approximate piecewise linear 
nature of the moisture content curve. 

Generating the curves.  Ideally, the relative conductivity, moisture content, 
and water capacity curves are determined directly by performing a series of tests 
on the soils involved in the study.  However, in many cases they can be 
approximated using a set of measured or approximated constants and a set of 
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]

empirical relationships.  For example, one option for generating the curves is to 
use the van Genuchten functions (van Genuchten 1980): 

( )[Kr e e= − −θ θ γ γ0 5 1
2

1 1. /  (49) 

and 

( )[θ α
β γ

e h= +
−

1 ]

)

   for h < 0 (50) 

θe = 1    for h ≥ 0 (51) 

where 

(θ θ θ θ θw r e s r= + −  (52) 

γ
β

= −1
1

 (53) 

and 

θw = moisture content (dimensionless) 

θe = effective moisture content (dimensionless) 

θ s = saturation moisture content (dimensionless) 

θ r = residual moisture content (dimensionless) 

β γ, = soil-specific exponents (dimensionless) 

α = soil-specific coefficient (1/L) 

Table 5 lists a set of saturated and residual moisture contents and the van 
Genuchten α and β terms for a variety of common soil types.  When applying the 
α term, care should be taken to convert it to the proper units. 
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Table 5 
Representative Soil Parameters 
Soil Type Saturated 

Moisture 
Content, θs 

Residual 
Moisture 

Content, θr 

α[cm-1] β 

Clay1 0.38 0.068 0.008 1.09 
Clay loam 0.41 0.095 0.019 1.31 
Loam 0.43 0.078 0.036 1.56 
Loam sand 0.41 0.057 0.124 2.28 
Silt 0.46 0.034 0.106 1.37 
Silt loam 0.45 0.067 0.020 1.41 
Silty clay 0.36 0.070 0.005 1.09 
Silty clay loam 0.43 0.089 0.010 1.23 
Sand 0.43 0.045 0.145 2.68 
Sandy clay 0.38 0.100 0.027 1.23 
Sandy clay Loam 0.39 0.100 0.059 1.48 
Sandy loam 0.41 0.065 0.075 1.89 
Note: 1 Agricultural soil, less than 60% clay 
Source: Carsel and Parrish (1988) 

Model convergence.  The unsaturated zone soil property curves can have a 
significant effect on model convergence.  If any portion of a curve has a sharp 
change in gradient (extreme curvature), FEMWATER may have a difficult time 
converging during the iterative solution process.  To aid in convergence, the user 
is given the option of using a B-spline function to help guarantee smooth curves 
over all pressures.  When this option is enabled, a B-spline will be fit through the 
points of the curves input by the user, eliminating the possibility for sharp 
gradient changes in the curves.  Tests indicate up to 20% faster convergence by 
using this option on some simulations.  This flag is set on the IP1 card and is 
discussed in the previous chapter under the IP1 card heading. 

Entering the curves.  The user must supply the moisture content, relative 
conductivity, and water capacity versus pressure head curves in tabular form.  
The curves are specified at the end of the model file using a set of xy series cards.  
The curves are referred to on the SP1 card by the ID’s of the xy series.  The 
format of the xy series card is described in Chapter 4, “The XY Series format.” 
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6 Boundary Conditions 
 

Introduction 

The boundary conditions supported by FEMWATER include point sources 
and sinks1 , Dirichlet (specified head), flux, flux gradient, and variable 
boundaries (rainfall/evaporation and seepage).  In each case, the prescribed 
values can be either constant or vary with time.  Not assigning boundary 
conditions to a mesh boundary is equivalent to a no-flux boundary in a flow 
simulation or to a no-diffusion flux boundary in a transport simulation. 

Choosing Appropriate Boundary Conditions 

FEMWATER offers the user several types of boundary conditions in an 
attempt to cover the range of valid boundary conditions that can be encountered 
in finite element groundwater modeling.  Some confusion over which boundary 
conditions are appropriate for various situations will undoubtedly occur.  The 
following discussion is intended to help in choosing appropriate boundary 
conditions in FEMWATER simulations. 

The most common boundary condition used in groundwater modeling is the 
specified head (Dirichlet) boundary condition.  If heads are known at a given 
location over the length of the simulation, this is the most appropriate boundary 
condition to use. 

As a general rule, the variable boundary condition should be used when 
modeling rainfall and evaporation.  This boundary condition is the most robust 
because it allows FEMWATER the freedom to change the boundary condition to 
a specified head boundary condition for both over- and undersaturated conditions 
(see the discussion of this boundary condition later in this chapter).  This feature 
is especially applicable in transient simulations where the water table may 
fluctuate over the simulation time span.  

                                                 
1 Point sources/sinks are technically not boundary conditions.  However, they are included in this 
chapter for convenience. 
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Some modelers may be more accustomed to using the specified flux 
boundary condition for infiltration/evaporation and inflow/outflow flux 
conditions.  Indeed, in some instances it is possible to know the flux on element 
faces with a reasonable degree of assurance.  However, the user is cautioned that 
the specified flux is always taken in a direction parallel to the normal of the 
element face to which this boundary condition is applied (see the discussion of 
the flux boundary condition later in this chapter).  Therefore, in a simulation 
where a known flux condition exists, the specified flux value must be adjusted 
for all element faces whose normals deviate from the known flux direction.  In 
most groundwater modeling scenarios, and particularly in transient simulations, 
the model is best suited either by using specified head boundary conditions (for 
inflow/outflow conditions on model boundaries) or by allowing the numerical 
model to change a flux boundary condition to a constant head condition if 
conditions warrant (for a infiltration/evaporation flux condition).  The variable 
boundary condition in FEMWATER provides the user with the latter capability. 

Gradient flux boundary conditions, as indicated in the discussion of this type 
of boundary condition later in this chapter, are rarely encountered in modeling 
natural systems but are included in FEMWATER for completeness and for 
research applications. 

File Format 

Boundary conditions are stored in the model file.  The set of model file cards 
corresponding to boundary conditions is shown in Figure 6. 

. 
PS1 nodeid flowseries /* Point source, flow rate */ 
PS2 nodeid concseries /* Point source, concentration */ 
DB1 nodeid headseries /* Dirichlet, head */ 
DB2 nodeid concseries /* Dirichlet, concentration */ 
CB1 elemid faceid fluxseries /* Flux, flux rate */ 
CB2 elemid faceid concseries /* Flux, chemical flux rate */ 
NB1 elemid faceid fluxseries /* Gradient Flux, gradient flux rate */ 
NB2 elemid faceid concseries /* Gradient Flux, chemical gradient flux rate */ 
RS1 elemid faceid fluxseries /* Variable, flux */ 
RS2 elemid faceid concseries /* Variable, concentration */ 
RS3 hcon hmin /* Variable, pond depth, min hd. */ 
. 

Figure 6.  The boundary condition cards in the model file 

Element Faces 

The flux, gradient flux, and variable boundary conditions described in later 
sections are all “flux” type boundary conditions and are assigned to element 
faces.  An element face is referenced by two indices, the element number and a 
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face index.  The element number is simply the element ID  The numbering 
scheme used to determine face indices is shown in Figure 7. 
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Hexahedron
Face         Nodes           
1 1-4-3-2
2 5-6-7-8
3 1-2-6-5
4 2-3-7-6
5 3-4-8-7
6 4-1-5-8

Prism or Wedge
Face         Nodes           
1 1-3-2
2 4-5-6
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4 2-3-6-5
5 3-1-4-6

Tetrahedron
Face         Nodes           
1 2-3-4
2 1-4-3
3 1-2-4
4 1-3-2

1

 

Figure 7.  Numbering scheme for element faces 

Point Sources/Sinks (PS) 

Point source/sink type boundary conditions consist of a volumetric flux or 
flow rate assigned to nodes in the mesh.  Sources and sinks typically correspond 
to injection and extraction wells.  For transport simulations, the concentration of 
the fluid can also be specified.  The sign convention for point sources and sinks 
in FEMWATER is that a positive flow rate represents an injection well and a 
negative value represents an extraction well. 
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Point sources/sinks are specified with the PS1 and PS2 cards.  The PS1 card 
is used to specify the flow rate (L3/T), and the PS2 card is used to specify the 
concentration (M/ L3).  Both cards contain a field which is an index to an XY 
Series card.  The XY Series card (specified elsewhere in the file) describes how 
the flow rate and concentration vary with time.  If the value is constant (does not 
vary with time), only one value should be given in the XY Series.  The XY 
Series card is described in Chapter 4. 

It should be noted that the PS2 card is required for all transport simulation 
point sources and sinks.  Thus a concentration must be specified for both 
injection and extraction wells.  The value specified at the extraction well will not, 
however, affect the simulation results in any way. 

A common practice in well installation is to inject and/or extract the fluid 
over a screened interval of the aquifer.  This interval can be any distance from 
several centimeters to many meters.  Since FEMWATER requires that well flow 
rates be specified at nodes, it is good practice to designate as many nodes of the 
finite element mesh as lie within the screened interval of the well as point sources 
and/or sinks.  The flow rate for the well should be divided among the nodes used 
to simulate the screened interval of the well.  It is not required that these flow 
rates be divided evenly among the well screen nodes thus allowing the user to 
weight rates of flow from different levels of the screened interval. 

It should also be noted that FEMWATER requires point sources and sinks to 
be defined only in the saturated zone.  Thus all wells, whether injection or 
extraction, must lie in the saturated zone of the aquifer and may not exist in the 
vadose zone.  If a point source or sink is located in a region that becomes 
unsaturated during the course of the simulation, the simulation will halt at the 
timestep where this occurs, regardless of whether the well is injecting or 
extracting. 

 
Card Type PS1 
Description Point source/sink flow rate for both flow and transport simulation. 
Required NO 
Format PS1 nodeid flowseries 
Sample PS1 324 1 
Field Variable Value Description 

Nodeid NPWF(I) + Node number. 
Flowseries IWTYPF(I) + Index of the flow rate XY Series. 

 
Card Type PS2 
Description Point source/sink concentration for transport simulation. 
Required NO 
Format PS2 nodeid concseries 
Sample PS2 324 2 
Field Variable Value Description 

Nodeid NPWT(I) + Node number. 
Concseries IWTYPT(I) + Index of the concentration XY Series. 
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,

Dirichlet Boundary Conditions (DB) 

A Dirichlet boundary condition consists of a prescribed total head at a node.  
A concentration may also be specified.  The Dirichlet boundary condition is 
usually applied to soil-water interface such as stream, artificial impoundments, 
lakes, and coastal lines. 

The governing flow equations for FEMWATER are written in terms of 
pressure head.  Thus, the formal definition of a Dirichlet boundary condition for 
head is: 

h h x y z t on Bd b b b d= ( , , , )  (54) 

where (xb,yb,zb) is the spatial coordinate on the boundary, Bd is the Dirichlet 
boundary, and hd is the prescribed pressure head.  Since it is more convenient to 
specify total head rather than pressure head, Dirichlet boundary conditions are 
input as total head values, and they are converted internally by FEMWATER to 
pressure heads by subtracting the elevation of the nodes where the boundary 
conditions are assigned. 

Thus, the formal definition of a Dirichlet concentration boundary condition 
for head is:  

C C x y z on Bd b b b d= ( , , ) , (55) 

where Cd is the prescribed concentration at the Dirichlet boundary.  It should be 
noted that this is a fixed concentration and is independent of fluid flow direction.   

There are situations in transport modeling where one desires to solve for the 
fluid concentration as the fluid is exiting through a specified head boundary.  
FEMWATER provides a means of accomplishing this through the use of two 
types of boundary conditions.  The specified head values should be assigned to 
the nodes as described above however no specified concentration value should be 
assigned.  The variable boundary condition (described later in this chapter) 
should be assigned to the element faces on this boundary.  This will allow the 
user to assign a concentration to the fluid when flow is entering the system 
through the constant head boundary and when flow leaves the system through the 
boundary, a concentration will be computed by FEMWATER.  The reader is 
referred to the discussion of the variable boundary condition later in this chapter 
for a more detailed description of how to implement this special combination of 
boundary conditions. 

Dirichlet boundary conditions are specified with the DB1 and DB2 cards.  
The total head (L) is specified with the DB1 card for flow simulation, and the 
concentration (M/L3) is specified with the DB2 card for transport simulation.  In 
both cases, the values are specified with XY Series cards.  If the head or 
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concentration does not change with time, only one value should be listed in the 
XY Series.  

 
Card Type DB1 
Description Dirichlet boundary conditions, prescribed total head for flow simulation. 
Required NO 
Format DB1 nodeid headseries 
Sample DB1 324 2 
Field Variable Value Description 

Nodeid NPDBF(I) + Node number. 
Headseries IDTYPF(I) + Index of the head XY Series. 

 
Card Type DB2 
Description Dirichlet boundary conditions, prescribed concentration for transport simulation. 
Required NO 
Format DB2 nodeid concseries 
Sample DB2 324 3 
Field Variable Value Description 

Nodeid NPDBT(I) + Node number. 
Concseries JDTYPT(I) + Index of the concentration XY Series. 

Flux Boundary Conditions (CB) 

A flux boundary condition consists of a fluid flux prescribed at a boundary 
element face.  A contaminant mass flux may also be specified.  Formally, the flux 
boundary condition for flow can be stated as: 

− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
c b b b ch z q x y z t on B( , , , ) ,  (56) 

where 

n = outward unit vector normal to the boundary 

(xb, yb, zb) = spatial coordinate on the boundary 

K = hydraulic conductivity tensor 

ρo = reference (clean) fluid density 

ρ = solution density 

h = pressure head 

z = elevation 

qc = flux rate 
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B

Bc = flux boundary 

The flux boundary for transport can be stated as: 

( ) ( )n V D⋅ − ⋅∇ =C C q x y z t onc b b b cθ , , , , (57) 

where  

V = Darcy velocity 

C = concentration 

θ = moisture content 

D = dispersion coefficient tensor 

qc = prescribed flux rate 

Bc = flux boundary 

The flux boundary condition is typically applied to surface water bodies with 
known infiltration rates through the layers of the bottom sediments or liners into 
the subsurface media.  The flux rate for flow and transport is a negative value 
when it leaves the system and is a positive value when it enters the system. 

Flux boundary conditions are specified with the CB1 and CB2 cards.  The 
flux rate (L/T) is specified with the CB1 card for flow simulation, and the 
contaminant mass flux rate (mass per unit area per time, M/L2/T) is specified 
with the CB2 card for transport simulation.  In both cases, the values are 
specified with XY Series cards.  If the flux rate does not change with time, only 
one value should be listed in the XY Series.  Note that concentration flux is not 
specified with the flux boundary condition but rather contaminant mass flux.  It 
is possible in FEMWATER to prescribe a fluid flux and a concentration flux at 
the same element faces by prescribing both the flux and Variable boundary 
conditions at the element faces.  Fluid flux is specified at the element faces with 
the flux boundary condition with no contaminant mass flux.  The Variable 
boundary condition, described later in this chapter, is then used to prescribe the 
concentration flux (with no fluid flux) at the same element faces.  This 
combination of boundary condition types is very useful in modeling boundaries 
with known inflow concentrations and unknown outflow concentrations, such as 
in tidal saltwater boundaries. 
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Card Type CB1 
Description Flux boundary conditions, prescribed flux rate for flow simulation. 
Required NO 
Format CB1 elemid faceid fluxseries 
Sample CB1 353 3 8 
Field Variable Value Description 

Elemid NPCBF(I) + Element number. 
Faceid IDCF(I) + Element face ID. 

Fluxseries ICTYPF(I) + Index of the flux XY Series. 

 
Card Type CB2 
Description Flux boundary conditions, prescribed flux rate for transport simulation. 
Required NO 
Format CB2 elemid faceid concseries 
Sample CB2 353 3 9 
Field Variable Value Description 

Elemid NPCBT(I) + Element number. 
Faceid IDCT(I) + Element face ID. 

Concseries ICTYPT(I) + Index of the contaminant mass flux XY Series. 

Gradient Flux Boundary Conditions (NB) 

The gradient flux boundary condition rarely occurs in nature, but is included 
for completeness.  It consists of a fluid flux gradient prescribed at a boundary 
element face.  The concentration of the fluid may also be specified.  Formally, 
the gradient flux boundary condition for flow can be stated as: 

− ⋅ ⋅ ∇ =n K
ρ
ρ

o
n b b b nh q x y z t on B( , , , ) ,  (58) 

where 

n = outward unit vector normal to the boundary 

(xb, yb, zb) = spatial coordinate on the boundary 

K = hydraulic conductivity tensor 

ρo = reference (clean) fluid density 

ρ = solution density 

h = pressure head 

qn = prescribed flux rate 
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Bn = Gradient flux boundary 

The gradient flux boundary for transport can be stated as: 

( ) ( )n D⋅ − ⋅∇ =θ C q x y z t on Bn b b b n, , , , (59) 

where 

C = concentration 

θ = moisture content 

D = dispersion coefficient tensor 

qn = prescribed flux rate 

Bn = Gradient flux boundary 

The flux gradient for flow and transport is a negative value when it leaves the 
system and is a positive value when it enters the system. 

Gradient flux boundary conditions are specified with the NB1 and NB2 
cards.  The flux gradient (L/T) is specified with the NB1 card for flow 
simulation, and the flux rate (mass per unit area per time, M/L2/T) is specified 
with the NB2 card for transport simulation.  In both cases, the values are 
specified with XY Series cards.  If the flux gradient does not change with time, 
only one value should be listed in the XY Series.  

 
Card Type NB1 
Description Gradient flux boundary conditions, prescribed flux gradient for flow simulation. 
Required NO 
Format NB1 elemid faceid fluxseries 
Sample NB1 353 3 8 
Field Variable Value Description 

Elemid NPNBF(I) + Element number. 
Faceid IDNF(I) + Element face ID. 

Fluxseries INTYPF(I) + Index of the flux gradient XY Series. 

 
Card Type NB2 
Description Gradient flux boundary conditions, prescribed flux rate for transport simulation. 
Required NO 
Format NB2 elemid faceid fluxseries 
Sample NB2 353 3 9 
Field Variable Value Description 

Elemid NPNBT(I) + Element number. 
Faceid IDNT(I) + Element face ID. 

Fluxseries INTYPT(I) + Index of the contaminant mass flux XY Series. 
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,

Variable Boundary Conditions (RS) 

Variable boundary conditions are typically applied to the top faces of the 
uppermost layer of elements in the mesh (i.e., at the soil-air interface), and are 
used to simulate evaporation, seepage due to precipitation and seepage exit faces.  
Another powerful use of the variable boundary condition is in combination with 
either Dirichlet or flux boundary conditions to simulate boundaries with known 
head or fluid flux rates but unknown concentrations.  Variable boundary 
conditions are called “variable” not because they can vary with time, but because 
they correspond to either a Dirichlet or a flux boundary condition depending on 
the potential evaporation, the conductivity of the media, the availability of water 
such as rainfall and the level of the groundwater.   

During the precipitation period, variable boundary conditions are defined as 

h h x y z t on Bp b b b v= ( , , , )  (60) 

or 

− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
p b b b vh z q x y z t on B( , , , ) ,  (61) 

During the nonprecipitation period, variable boundary conditions are defined 
as 

h h x y z t on Bp b b b v= ( , , , ) ,

,

 (62) 

or 

h h x y z t on Bm b b b v= ( , , , )  (63) 

or 

− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
e b b b vh z q x y z t on B( , , , ) ,  (64) 

where 

h = pressure head 

hp = ponding depth 
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(xb,yb,zb) = spatial coordinate on the boundary 

Bv = variable boundary 

n = outward unit vector normal to the boundary 

K = hydraulic conductivity tensor 

ρo = reference (clean) fluid density 

ρ = solution density 

z = elevation 

qp = precipitation 

hm = minimum pressure head 

qe = maximum evaporation rate 

Only one of Equations (60)-(64) is used at any given time on the variable 
boundary.  During the precipitation period, rainfall infiltrates to the subsurface at 
a rate equal to the prescribed precipitation flux, qp, according to Equation (61).  If 
the precipitation flux exceeds the infiltration capacity of the soil or if the 
groundwater table rises to the surface of the mesh, the pressure head is not 
allowed to rise above the ponding depth, hp.  If it does, the boundary condition 
switches to the Dirichlet condition of Equation (60), i.e., the pressure head is set 
equal to the ponding depth. 

During the nonprecipitation period, the boundary condition corresponds to 
one of Equations (62)-(64).  Once again, the pressure head is not allowed to rise 
above the ponding depth (Equation (62)).  If the pressure head is below the 
ponding depth, the boundary condition is switched to the flux condition of 
Equation 64 and the flux is set equal to the specified evaporation flux, qe.  If the 
pressure head drops below the minimum pressure head, hm, the boundary 
condition is switched to the Dirichlet condition of Equation (63), and the pressure 
head is set equal to the minimum pressure. 

The reader might question how a Dirichlet boundary condition could ever be 
switched to a flux boundary condition because a Dirichlet boundary condition, by 
definition, will continually add or remove water from the system as needed to 
maintain the prescribed head.  However, in the case of the variable boundary 
condition, Dirichlet conditions are valid at either the “low water” or “high water” 
conditions when nodes are either only adding or only removing water, 
respectively.  Thus if a variable boundary which is currently set to a Dirichlet 
“low water” condition begins to remove water from the system, it is then 
switched to a flux boundary and the water is removed at the prescribed flux rate.  
The same is true but in reverse at the other extreme where Dirichlet nodes are 
only adding water at the “high water” condition.  When the boundary begins to 
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add water, the boundary type is changed to flux and the water is added at the 
prescribed fluid flux rate. 

During periods when the variable boundary condition is set to a flux 
boundary condition, the specified flux value is taken to be directed vertically (i.e. 
in either the positive or negative z-direction) in order to simulate the primary 
direction of rainfall and evaporation. To calculate the volumetric flux entering 
the system, FEMWATER takes the specified flux rate and multiplies this value 
by the area of the element face projected onto a horizontal xy-plane 
(perpendicular to the flux direction ).  For element faces that deviate from the 
horizontal by some degree, this calculation will ensure that the flux is not 
artificially exaggerated.  The variable boundary condition differs from the 
specified flux boundary condition in this matter.  The specified flux boundary 
condition always assumes that the specified flux is parallel to the element face 
normal and thus the normal element face area is used for the volumetric flux 
calculation.  This feature of the variable boundary condition allows 
FEMWATER to more accurately simulate real world conditions of rainfall 
infiltration and evaporation on a topographically varying surface. 

Yet another use of the variable boundary condition is in the modeling of 
seepage exit faces and groundwater drains.  The variable boundary condition can 
be applied to element faces where groundwater seepage is possible but unknown 
in quantity or exact location.  A reasonable evaporation rate should be prescribed 
for conditions where the faces are unsaturated but if the water table rises and the 
element face becomes saturated, the boundary will act as a seepage face, 
removing groundwater from the system.  In this fashion, potential seepage 
locations can be identified.  This ability also allows FEMWATER to model the 
conditions found with agricultural drains and “gaining” streams that are fed by 
groundwater seepage but do not provide flow back to the groundwater system. 

For transport simulations, during both the precipitation and nonprecipitation 
periods, the variable boundary condition is either a flux boundary condition with 
a given total flux, or a zero gradient flux.  Mathematically, this can be expressed 
as: 

( ) ( )n V D n V n V⋅ − ⋅∇ = ⋅ ⋅ ≤C C C x y z t ifv b b bθ , , , 0  (65) 

( )n D n V⋅ − ⋅∇ = ⋅ >θ C if0 0  (66) 

where 

C = concentration 

V = Darcy velocity tensor 

θ = moisture content 
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D = dispersion coefficient tensor 

Cv = concentration at the variable boundary 

If the flow direction through the boundary is into the region, the flux 
condition of Equation (65) governs and the concentration in the incoming fluid is 
equal to the prescribed concentration Cv.  If the flow direction through the 
boundary is out of the region, the gradient flux condition of Equation (66) 
governs, meaning that the concentration of the outgoing fluid is whatever it was 
before it left the region. 

The behavior of the variable boundary condition in transport simulations 
provides a powerful tool in modeling conditions where fluid head or flux 
conditions are known but concentration flux is unknown.  As mentioned in both 
the Dirichlet and flux boundary condition sections, it is possible to assign either 
Dirichlet or flux conditions at a boundary for the fluid, leaving the concentration 
unassigned for these types.  Then, by assigning a variable type  boundary 
condition for the concentration, the user is able to specify the concentration of 
the fluid when flow is entering the system but have FEMWATER calculate the 
concentration of the fluid when flow is leaving the system. 

Variable boundary conditions are defined by specifying the minimum 
pressure head, hm, the ponding depth, hp, the flux rates qp and qe, and the 
concentration, Cv.  The minimum pressure head and the ponding depth are 
specified on the RS3 card.  Only one RS3 card is entered in the model file thus 
the minimum pressure head, hm, and the ponding depth, hp are global values for 
the entire simulation.  The specified minimum pressure head and ponding depth 
are used for all element faces where a variable boundary condition is specified. 

The flux rates (L/T) for precipitation and evaporation, qp and qe, are both 
specified on the RS1 card as an index to a single XY Series.  The values in the 
series that are positive are treated as precipitation flux, and the values that are 
negative are interpreted as evaporation flux.  Thus, cycles of rainfall/evaporation 
can be designated on one curve by varying the curve in the XY Series from 
positive to negative and vice versa. 

The concentration (M/L3) is entered on the RS2 card as an index to an XY 
series.  The ponding depth (L) and the minimum pressure head (L) are both 
specified on the RS3 card. 
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Card Type RS1 
Description Variable boundary condition, rainfall/evaporation/seepage flux rate for flow 

simulation. 
Required NO 
Format RS1 elemid faceid fluxseries 
Sample RS1 8749 4 12 
Field Variable Value Description 

Elemid NPVBF(I) + Element number. 
Faceid IDRF(I) + Element face index. 

Fluxseries IVTYPF(I) + Index number of rainfall/evaporation time series for the 
element face. 

 
Card Type RS2 
Description Variable boundary condition, rainfall/seepage concentration for transport simulation. 
Required NO 
Format RS2 elemid faceid concseries 
Sample RS2 8749 4 13 
Field Variable Value Description 

Elemid NPVBT(I) + Element number. 
Faceid IDRT(I) + Element face index. 

Concseries IVTYPT(I) + Index number of concentration time series for the element 
face. 

 
Card Type RS3 
Description Variable boundary condition, ponding depth and minimum pressure head. 
Required NO 
Format RS3 hcon hmin 
Sample RS3 0.35 -8.0 
Field Variable Value Description 

1 HCON + The ponding depth. 
2 HMIN ± The minimum pressure head. 



 

Chapter 7  Initial Conditions  69 

7 Initial Conditions 

 

Introduction 

Whenever a FEMWATER analysis is performed, a set of initial conditions 
must be defined.  Initial conditions define the initial status of the pressure head 
and concentration.  Which initial conditions are required for a particular problem 
depends on the type of simulation that is being performed. The rules, options, 
and formats for defining initial conditions for FEMWATER are described in this 
chapter. 

Types of Initial Conditions 

Three types of initial conditions are possible for a FEMWATER simulation: 
cold starts, hot starts, and flow solutions.  Cold starts are used to establish a set of 
initial values at the beginning of a steady-state or transient simulation.  Hot starts 
are used to continue a previous run of FEMWATER without having to start over 
from a cold start.  Flow solutions are used to define the flow field that is 
necessary when performing a transport-only simulation (as opposed to coupled 
flow and transport). 

Cold Starts 

FEMWATER uses an iterative method to find a solution to flow and 
transport problems.  An iterative approach involves starting with an initial 
estimate of heads and concentrations and utilizing an iterative solver to gradually 
modify the initial values until they converge to a set of values that satisfy the 
underlying governing equations.  Using an initial estimate of values is called a 
cold start. 
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Steady state versus transient 

Cold starts must be specified regardless of whether the simulation is steady-
state or transient.  However, the approach taken to define the cold start may vary 
depending on whether the simulation is steady state or transient.  If an initial 
condition is chosen with values that are closer to the final solution, the simulation 
will converge with fewer iterations (resulting in a much shorter execution time).  
Because of the non-linear nature of unsaturated zone calculations, the solution to 
the flow equation is often non-unique.  Various sets of initial condition values 
chosen for a simulation can result in different converged solutions for the same 
set of boundary conditions, especially if the initial conditions used in each 
simulation vary significantly from each other.  Special care should be taken to 
ensure that reasonable estimates of groundwater conditions are used as initial 
conditions for FEMWATER simulations. 

With a transient simulation, the specification of the initial condition becomes 
more critical.  In this case, the initial condition should represent the actual state 
of the aquifer at the beginning of the simulation period.  In order for the 
simulation to be accurate, the initial condition must be compatible with the 
specified boundary conditions and stresses.  For example, suppose that the 
transient effect of a new injection/extraction well system on an aquifer is to be 
simulated.  If an incompatible initial condition is used, the response of the aquifer 
in the early part of the simulation will be due in part to the wells and in part to an 
adjustment of the aquifer that is required to make the heads and concentrations 
compatible with the other stresses and boundary conditions.  Therefore, it is often 
best to first perform a steady state simulation with the boundary conditions that 
will not change during the transient simulation, and then use the solution to this 
simulation as the initial condition for the transient simulation.  For this example, 
this would involve first running a steady-state simulation with all of the boundary 
conditions except for the injection and extraction wells.  The solution to this 
simulation would then be used as the initial condition for the transient simulation, 
and the response of the aquifer would be due solely to the added stresses from the 
injection and extraction wells. 

In the case of concentration, a steady-state simulation is often not applicable 
since transport seldom achieves steady-state conditions.  In many cases, the 
initial condition will correspond to an existing plume that has been characterized 
via three-dimensional interpolation from measurements at scattered locations. 

Required values 

If a flow-only simulation is performed, a set of pressure heads is required for 
the cold start initial condition.  If a transport-only simulation is performed, a set 
of concentrations is required (in addition to the flow solution as explained 
below).  If a coupled flow and transport simulation is being performed, a set of 
heads and a set of concentrations are both required. 
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The set of pressure head values required for a cold start simulation can be an 
estimate based on a level pool or an interpolated set of pressure heads based on 
measured values at discrete locations.  However, another option is to use the 
result of a previous FEMWATER simulation as the initial condition pressure 
heads.  This technique is often called “hot starting” a simulation.  FEMWATER 
has a hot start feature that is slightly different and only applies to transient runs 
which is described in the next section.  If a simulation is approaching 
convergence but the maximum number of iterations specified on the IP1 card is 
reached before convergence is achieved, FEMWATER will write out the 
unconverged pressure head file and terminate.  This file can then be used as the 
initial condition file for the next simulation, effectively starting the simulation 
where it stopped in the previous run.  This technique is useful in choosing initial 
conditions for a plan condition and a converged solution for the base condition 
has already been computed in a previous simulation. 

Another useful application of this technique is called “spinning up” a model.  
As mentioned in the previous section, if the cold start initial condition differs 
greatly from the final solution, the stresses due to the boundary conditions may 
cause FEMWATER to oscillate and have difficulty converging.  One solution to 
this problem is to select a better cold start.  Another solution is to start with a set 
of boundary conditions that are more compatible with the specified cold start and 
compute a solution.  The boundary conditions are then modified slightly and the 
solution from the first simulation is used as the initial condition for the second 
simulation.  This process is repeated and the boundary conditions are gradually 
changed until they correspond to the desired values. 

Convergence 

The values chosen for a cold start can have a significant impact on 
convergence.  If the selected cold start differs greatly from the converged 
solution, i.e., is highly incompatible with the model stresses, FEMWATER may 
have difficulty converging.  The quickest and most robust solution is achieved 
when cold start values are as close to the converged solution as possible. 

Hot Starts 

Since FEMWATER is a nonlinear, finite element model, solutions can 
require extensive computation time even for moderately sized meshes, 
particularly when a transient simulation involving numerous time-steps is being 
performed.  During a modeling study, it is not uncommon to encounter situations 
where the solution progresses well to a certain point in time and then diverges or 
“blows up.”  This situation can often be solved by decreasing the time-step size 
near the point in time where the solution degraded.  In such cases, it is often 
useful to be able to restart the simulation at some point just before the problem 
occurred rather than starting over from the beginning.  In order to do this, the 
“hot start” type of initial condition is required. 
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Hot start time 

A hot start consists of a set of files representing a transient solution of 
pressure head, moisture content (optional), velocity (optional), and concentration 
and a hot start time.  FEMWATER reads the transient solution file(s) and locates 
the set(s) of values at the time-step matching the hot start time.  The appropriate 
values are then loaded into FEMWATER as initial conditions and the simulation 
is restarted.  Moisture content and velocity files are not required by 
FEMWATER to hot start a simulation.  However, if a stopped simulation 
wherein moisture content or velocity files were output is hot started and the user 
specifies the velocity and/or moisture content file(s) as input to the simulation,  
the new solutions from the hot started simulation will be appended to the velocity 
and moisture content files from the previous simulation. 

When the initial or original simulation is performed, time-variant boundary 
conditions are typically defined on a time scale whose beginning corresponds to 
the start time of the simulation.  When a hot start is performed, it is not necessary 
to redefine time-variant boundary conditions so that they are defined from a point 
corresponding to the beginning of the new start time.  FEMWATER uses the 
specified hot start time and automatically interpolates the time-variant boundary 
conditions to the correct beginning time. 

Required values 

The solution files necessary for a hot start depend on the type of simulation.  
If a flow-only simulation is being performed, pressure head is required.  If a 
transport-only simulation is being performed, concentration is required (As in all 
transport-only simulations, a flow solution for the entire simulation time is 
required but this is not specified as a hot start input parameter).  If a coupled flow 
and transport simulation is being performed, pressure head and concentration are 
required.  The velocity and nodal moisture content files are used for post-
processing and are only required as input if the user wishes to have the new 
simulation solutions appended to the previous simulation solution files as 
described above.  If the user desires to have the flow and/or concentration values 
from a hot start simulation appended to the simulation results of a previous 
simulation, the same file name for the initial condition and output files should be 
specified in the super file.  See the section titled “Super File Input” at the end of 
this chapter for the super file input specifications. 

File format 

The files used for hot starts correspond to the data set solution files output by 
FEMWATER for post-processing.  These files consist of solutions organized by 
time-step and are sequential lists of scalar or vector values, with one value listed 
per node.  The nodal values are used for post-processing.  The output control 
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options which control data set output are described in the section “Save interval 
(OC3).”  The formats of the data set files are described in Appendix C. 

Flow Solutions 

A third type of initial condition is required when a transport-only simulation 
is being performed.  A transport-only simulation uses a previously computed 
flow solution (steady-state or transient) to define the three-dimensional flow field 
required to properly model the contaminant migration.  The flow solution 
consists of two options:  pressure head or velocity and pressure head written to 
data set files.  When the first option is used, the needed velocity and moisture 
content for transport simulation are computed from the pressure head.  When the 
second option is used, the needed moisture content is computed from the pressure 
head and velocity is read directly from the velocity file.  Thus, when running the 
flow simulation, care should be taken to ensure that the proper options are 
selected for solution output (see “Save options (OC4)”). 

The flow solution for a transport-only simulation is used in combination with 
either a cold start or a hot start.  With a cold start, a set of initial concentration 
values is provided for concentration in addition to the steady-state or transient 
flow solution.  With a hot start, a transient concentration solution and a hot start 
time are provided in addition to the flow solution. 

Summary of Initial Condition Requirements 

It can sometimes be confusing to determine which combination of initial 
conditions is required for a particular situation.  The sets of initial conditions 
required for all possible scenarios are shown in Table 6.  The X’s in the lower 
right corner of the table indicate which sets of values are required.  For example, 
for a cold start with a coupled flow and transport simulation, pressure head and 
concentration must be specified. 
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Table 6 
Initial Condition Requirements 

 Initial Condition 
Simulation Type Press. Head Moisture Cont. Velocity Concentration 

Cold Start 
Flow X    

Transport X   X 
Coupled X   X 

Hot Start 
Flow X X1 X1  

Transport X  X1 X 
Coupled X X1 X1 X 

1 Solution files are optional 

Initial conditions are specified in a two-step process.  First of all, a set of 
cards must be entered in the model file specifying the basic control parameters 
for initial conditions such as the hot start time and the format of the initial 
condition files (text or binary).  Next, the initial conditions are assembled in a set 
of data set files. The data set files should be located in the same directory as the 
other input files.  A set of cards are entered in the super file that specify the 
names of the data set files containing the initial conditions. 

Model File Input 

A set of input cards is required in the model file to designate the control 
parameters for the initial conditions.  The cards are summarized in Figure 8.  
Each of the cards is explained in more detail in the following sections. 

. 
ICS istart /* Cold start vs. hot start */ 
ICT hstime /* Hot start time */ 
ICC icon conval /* Use constant concentration */ 
ICH ihead hconst /* Compute press from const head */ 
ICF icfile ivfile iffu /* Initial cond. file format */. 
. 

Figure 8.  The initial condition cards in the model file 

Start type (ICS) 

The ICS card is used to specify whether the simulation is to be started with a cold 
start or a hot start. 
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Card Type ICS 
Description Initial condition start type. 
Required YES 
Format ICS istart 
Sample ICS 1 
Field Variable Value Description 

1 ISTART 0 
1 

Cold start. 
Hot start. 

Hot start time (ICT) 

If a hot start is specified on the ICS card, the hot start time must be specified on 
the ICT card.  This time is used to interpolate the time variant boundary 
conditions to a proper starting point and to locate the proper set of initial 
conditions from the multiple time-steps defined in the data set files of pressure 
head, moisture content, etc.  

 
Card Type ICT 
Description Initial condition hot start time. 
Required YES 
Format ICT hstime 
Sample ICT 234.0 
Field Variable Value Description 

1 HSTIME ± Hot start time. 

Constant or variable concentration (ICC) 

When defining a single set of concentration values for a cold start initial 
condition, it is often useful to use a constant value of concentration everywhere 
in the problem domain.  For example, in many cases, an initial condition of zero 
concentration everywhere in the problem domain is appropriate.  The ICC card 
can be used to easily define a constant concentration for the entire mesh.  This 
alleviates the need to create a data set file with the same value repeated for each 
node in the mesh.  If a constant value is not appropriate, the ICC card specifies 
that the initial condition varies spatially and the values are defined by a data set 
file. 

 
Card Type ICC 
Description Constant or variable concentration initial condition. 
Required NO 
Format ICC icon conval 
Sample ICC 0 0.0 
Field Variable Value Description 

1 ICON 0 
1 

Constant concentration initial conditions. 
Spatially variable concentration initial conditions. 

2 CONVAL ± If ICON=0, the concentration value.  Otherwise, omit. 
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Constant or variable head (ICH) 

The ICH is similar to the ICC card in that it can be used as a quick and easy 
way to define a cold start initial condition for pressure head.  The ICH card can 
be used to designate that the pressure head varies spatially and that the values 
will be read from a data set file.  Alternately, the card can be used to specify a 
constant value of total head.  The pressure head initial condition is then defined 
in FEMWATER by subtracting the elevation of each node from the specified 
total head to define the pressure head for the node. 

 
Card Type ICH 
Description Constant or variable  head initial condition. 
Required NO 
Format ICH ihead hconst 
Sample ICH 0 100.0 
Field Variable Value Description 

1 IHEAD 0 
1 

Constant total head  initial conditions. 
Spatially variable pressure head initial conditions. 

2 HCONST ± If IHEAD=0, the total head value.  Otherwise, omit. 

Initial condition file format (ICF) 

With the exception of the constant value approach for cold starts, the initial 
conditions for cold starts, hot starts, and flow solutions are defined in data set 
files.  Data set files can be in either text or binary format.  The ICF card is used 
to designate the format of the files so that they can be read properly by 
FEMWATER.  A format flag is specified for the cold start or hot start files and 
another format flag is specified for the flow solution files used for a transport-
only simulation (if necessary).  In addition, the card includes a flag indicating 
whether the flow solution is steady state or transient. 

 
Card Type ICF 
Description Initial condition file format. 
Required YES 
Format ICF icfile ivfile iffu 
Sample ICF 1 1 1 
Field Variable Value Description 

1 ICFILE 0 
1 

The initial condition files are in text format. 
The initial condition files are in binary format. 

2 IVFILE 0 
1 

The flow files are in text format. 
The flow files are in binary format. 

3 IFFU 0 
1 

Flow files contain a steady-state solution. 
Flow files contain a transient solution. 

Super File Input 

As mentioned in the previous paragraph, initial conditions are typically 
defined with a set of data set files.  The data set files should be located in the 
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same directory as the other input files.  The names of the data set files to be used 
for initial conditions must be specified in the FEMWATER super file described 
in Chapter 2.  The initial condition cards in the super file are shown in Figure 9. 
Each card consists of a header, which identifies the type of file, and the filename.  
Only the cards corresponding to files needed for a particular simulation should be 
included. 

. 
ICHD filename /* Pressure head init. cond. */ 
ICMC filename /* Moisture content (nodal) init. cond. */ 
ICVL filename /* Velocity init. cond.*/ 
ICCN filename /* Concentration init. cond. */ 
FLVL filename /* Velocity flow file (optional)*/ 
FLPH filename /* Pressure head file (required)*/ 
. 

Figure 9.  The initial condition cards in the super file 

The super file is also used to designate the names of the solution files.  
During a hot start, it is possible to use the same names for the hot start files and 
the solution files.  If the same names are used, FEMWATER will append the 
solution to the end of the hot start files rather than overwriting the files or 
creating new files.  
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8 Sample Applications 

 

The purpose of this section is to provide typical examples of FEMWATER 
applications after which one might pattern new applications.  Five examples are 
provided that demonstrate different capabilities of FEMWATER.  Each discusses 
boundary and initial condition specification.  The input files associated with 
these examples are distributed with the FEMWATER executable and can be 
found in the “examples” directory. 

Problem 1:  Steady-State Wellhead Protection 

The initial support for developing FEMWATER within the GMS was 
provided by the AERL to advance the state of the art and provide practice in 
doing wellhead protection studies.  As a result, of the technologies accepted by 
the U.S. Environmental Protection Agency (EPA) to do wellhead protection 
studies, FEMWATER and GMS provide the most rigorous modeling tools.  
Several of these studies have been completed within the Department of Defense 
and many more are in the planning phase. 

The provided example illustrates how to use FEMWATER to conduct a 
steady-flow simulation for a wellhead protection problem.  The left and right 
sides of the model are bounded by freshwater head boundary conditions (Figure 
10).  The front and back of the model are groundwater divides represented by no-
flux boundary conditions.  The bottom of the model is an impervious stratum that 
does not allow significant amounts of water to leave the model.  This is 
commonly located at aquicludes or deep aquitards.  The pressure head is assumed 
to be hydrostatic throughout the model with water table initial conditions 
assumed to be a constant 12.0 m.  The following boundary conditions are given: 
constant head of 12.0 m on the left side of the model, 13.0 m on the right side of 
the model, and no flux on the front and back of the model.  Seventeen pumping 
wells are located in the top layer of coarse sand near the middle of the region.  
The pumping rate of the wells is a constant 0.25 m3/hr.  One of the wells could be 
increased to determine the effect on the other wells.  The head tolerance is 0.001 
m.  The pointwise iterative solver is used to solve the matrix equations.  The 
computational mesh consists of 4,000 elements and 3,507 nodes. 
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No Flow BoundaryPumping WellsSpecified Head
Boundary

Specified Head
Boundary

No Flow Boundary

 

Figure 10.  Wellhead protection application showing numerical model mesh and 
assigned boundary conditions 

This problem took approximately 1.1 minutes for the steady-state solution to 
converge on a 200-MHz Pentium class personal computer with 32 MB of 
memory. 

Problem 2:  Transient Confined Disposal 

Confined Disposal Facilities (CDF’s) are essentially settling basins that 
accept dredged materials from navigation channels.  The dredged material 
typically enters the CDF’s as aqueous slurries for the purposes of settling out the 
solids and returning the clean water to the sea.  This is a common activity for the 
U.S. Army Corps of Engineers.  Regulatory agencies are increasingly requiring 
the use of 3-D groundwater models to determine the path of groundwater from 
the CDF to surrounding areas.  Since dredged material sometimes contains 
compounds that should not enter drinking water supplies, models of CDF’s can 
determine if the contamination of drinking water wells was caused by a particular 
CDF.  In the interest of prevention, CDF’s can be sited and designed to ensure 
that they will not contaminate local wells. 

The provided example is presented to illustrate the procedure for conducting 
a transient flow simulation at a CDF.  The left and right sides of the model are 
bounded by freshwater head boundary conditions (Figure 11).  The front and 
back of the model are bounded by groundwater divides represented by no-flux 
boundary conditions.  The bottom of the model is an impervious stratum.  A 
pond (CDF) filled with a conservative chemical constituent is located on the right 
side of the model.  Pressure is assumed to be hydrostatic throughout the model 
with water table initial conditions assumed to be a constant 12.0 m.  The  
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eft side 

odel.  A 

tive 

following boundary conditions are given: constant head of 12.0 m on the l
of the model, variable head with slowly rising water table assumed on the right 
side of the model, constant head of 13.0 m with concentration of 10 mg/ l  
assumed in the pond, and no flux imposed on the front and back of the m
well with multiple screen openings is located near the center of the region.  The 
pumping rate of the well is varied slowly with a slightly increasing rate.  It starts 
with 0.05 m3/hr and increased to 0.1 m3/hr at time = 10.0 hr, where it stays 
constant at 0.1 m3/hr.  The head tolerance is 0.001 m and the pointwise itera
solver is used.  A total of 200 hr with variable time-step is simulated. 

Pond
Disposal

Dredge and
No Flow Boundary

Pumping WellSpecified Head
Boundary

Specified Head
Boundary

No Flow Boundary

 

Figure 11.  Confined disposal facility application showing numerical model mesh 

This problem took approximately 9.1 minutes for the transient-flow solution 
to c

 

This example illustrates a means for modeling a simple remediation situation 
usin

el is 

ws: 

and assigned boundary conditions 

onverge on a 200-MHz Pentium class personal computer with 32 MB of 
memory. 

Problem 3:  Transient Groundwater Remediation

g a cutoff wall to capture flows from a chemical-laden pond.  The left and 
right sides of the model are bounded by freshwater head boundary conditions 
(Figure 12).  The front and back of the model are bounded by groundwater 
divides represented by no-flux boundary conditions.  The bottom of the mod
an impervious stratum.  A cutoff wall consisting of impervious media is installed 
in the middle of the model and a chemical lagoon is located on the right side. 
Pressure head is assumed hydrostatic throughout the region with water table 
initial conditions of 12.0 m throughout.  The boundary conditions are as follo
constant head of 12.0 m on the left side, variable head with slowly rising head on 
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n.  

 

the right side, constant head of 13.0 m with a concentration of 10 mg/ l  in the 
ponding lagoon, and no-flux conditions on the front, back, and bottom  The 
pumping wells are located in the coarse sand layer near the center of the regio
The pumping rate of the well slowly increases.  The pumping starts with 0.05 
m3/hr and increases to 0.1 m3/hr at time = 10.0 hr, where it stays constant at 0.1
m3/hr.  The pointwise iterative solver is used.  A total of 500 hr with variable 
time-step is simulated. 

. 

Cutoff Wall

Pond
Disposal

Dredge and
No Flow Boundary

Pumping WellSpecified Head
Boundary

Specified Head
Boundary

No Flow Boundary

 

Figure 12.  Groundwater remediation application showing numerical model mesh 

This simulation took approximately 14.2 minutes for the flow and transport 
solu

Problem 4:  Transient Non-point Chemical Spill 

This problem presents an example of how to model a non-point chemical 
spil r 

ft 

el is 

 

rainfall imposed as a variable boundary condition on the ground surface, a 

and assigned boundary conditions 

tion to converge on a 200-MHz Pentium class personal computer with 32 
MB of memory. 

l under transient conditions.  It is presumed that a chemical was spilled ove
the entire surface of the region and as rainfall infiltrates, the spilled chemical 
dissolves and contaminates the rainfall that recharges the groundwater.  The le
and right sides are bounded by freshwater constant head boundary conditions 
(Figure 13).  The front and back of the region are bounded by groundwater 
divides represented by no-flux boundary conditions.  The bottom of the mod
bounded by an impervious stratum.  The pressure is assumed to be hydrostatic.  
The initial water surface elevation is a constant 11.0 m.  The following boundary
conditions are given:  a constant head of 11.0 m on the left side of the region, a 
variable head with a slowly rising water table on the right side of the region, 
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 the 

 
 

contaminated infiltrating fluid with a concentration of 10.0 mg/ l , and no flux
imposed on the front and back of the region.  A set of wells are located near
center of the region.  The pumping rate of the well is varied with a slowly 
increasing rate.  It starts with 0.05 m3/hr and increases to 0.1 m3/hr at time = 100
hr, and it stays constant at 0.1 m3/hr.  The head tolerance is 0.001 m and the
pointwise iterative solver is used.  A total of 150 hr with variable time-steps is 
simulated. 

Across Entire Top Surface
Contaminated Rainfall Flux

No Flow Boundary

Pumping WellSpecified Head
Boundary

Specified Head
Boundary

No Flow Boundary

 

Figure 13.  Non-point chemical spill application showing numerical model mesh 
and assigned boundary conditions 

This pro tes for the flow and transport 
solution to converge on a 200-MHz Pentium class personal computer with 32 
MB

Problem 5:  Transient Salinity Intrusion 

ATER can be used 
to study a variety of coastal aquifer problems.  It is currently being used by the 
Cor

linity movement in coastal aquifers, it is 
necessary to have coupled flow and density-driven transport.  The example 
prob eft 

resh 

blem took approximately 17.8 minu

 of memory. 

The salinity intrusion example demonstrates how FEMW

ps of Engineers to determine the impacts of deepened navigation channels on 
salinity intrusion in coastal aquifers and how increased groundwater pumping 
will affect drinking water supplies. 

In order to correctly simulate sa

lem is a schematic example of a coastal salinity intrusion problem.  The l
side of the region is bounded by seawater, and the right side is bounded by f
water (Figure 14).  The front and back of the region are bounded by groundwater 
divides and the bottom by an impervious stratum.  A pumping well is located 
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it 

near the center of the region.  The boundary conditions are specified as a 20.0-
kg/ l tidal boundary on the left side and fresh water with a rising water table on
the right side.  The pumping rate of the well is varied with a slowly increasing 
rate.  It starts with 0.5 m3/hr and increases to 2.0 m3/hr at time = 100.0 hr where 
stays constant at 2.0 m3/hr.  A total of 10.0 hr with variable time-steps is 
simulated.  The computational mesh consists of 5,664 elements and 3,484 nodes. 

No Flow Boundary

Pumping WellSpecified Head
Sea Water
Boundary

Specified Head
Fresh Water

Boundary

No Flow Boundary

 

Figure 14.  Transient salinity Intrusion application showing numerical model 
mesh and assigned boundary conditions 

This proble e transient solution to 
converge on a 200-MHz Pentium class personal computer with 32 MB of 

m took approximately 45.7 minutes for th

memory.  
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Appendix A Mathematical 
Formulation 

 

Governing Equations for Flow 

From the notion for continuity of fluid, continuity of solid, consolidation of 
the media, and the equation of state (Yeh 1992)1 are obtained the starting 
equation for this derivation: 

( ) ( ) ( )
∇ ⋅ ⋅ ∇ + ∇

⎡
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⎤

⎦
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Vsp g z nS q
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 (A1) 

where 

ρ = fluid density (M/L3) 

k = intrinsic permeability tensor of the media (L2) 

µ = dynamic viscosity of the fluid (M/L/T) 

p = fluid pressure [(ML/T2)/L2] 

g = acceleration of gravity (L/T2) 

z = potential head (L) 

n = porosity (L3/L3) 

S = degree of saturation (dimensionless) 

Vs = velocity of the deformable material due to consolidation (L/T) 

                                                 
1 References cited in this Appendix are located at the end of the main text. 
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ρ* = density of the injected fluid (M/L3) 

q = internal source/sink [(L3/T)/L3] 

t = time (T) 

Expanding the right hand of Equation (A1):  
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Expanding Equation (A2) by the chain rule: 
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where C is chemical concentration (M/L3).  Rearranging Equation (A3) gives: 
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where the first and second terms represent the storativity term, the third term is 
the density-concentration coupling term, and the fourth term is the unsaturated 
term. Substituting Equation (A4) into Equation (A1): 
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 (A5) 

Making the approximation by neglecting the second-order term: 

nV ⋅∇ − − − − →(S )ρ 0s  (A6) 

gives 
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Defining the compressibility of the fluid as: 

β
ρ
∂ρ
∂

=
1

p
 (A8) 

where β is the compressibility of the fluid (LT2/M).  Also defining the moisture 
content as: 

θ = Sn  (A9) 

where θ is the moisture content (dimensionless).  Substitute Equations (A8) and 
(A9) into Equation (A7) and rewrite it to obtain: 
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 (A10) 

Remembering the continuity statement of incompressible solids, a 
compressible skeleton is defined as (Yeh 1992): 

[ ]∂
∂

( )
( )

1
1

−
+ ∇ ⋅ − =

n
t

n Vs 0  (A11) 

Rearranging Equation (A11) in the following form: 

( )∂
∂

n
t

n+ ∇ ⋅ = ∇ ⋅V ss V  (A12) 
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Substituting Equation (A12) into Equation (A10) gives: 
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Recalling that the flux of solid velocity is the divergence of Vs (Yeh 1992): 

∇⋅ =Vs α
∂
∂

p
t

 (A14) 

where α is the coefficient of consolidation of the media (LT2/M).  Substituting 
Equation (A14) into Equation (A13) and rewriting: 
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Substituting Equation (A9) into Equation (15) gives 
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 (A16) 

Experimental evidence has shown that the degree of saturation is a function of 
pressure as: 

( )S S p=  (A17) 

Substitution of Equation (A17) into Equation (A16) gives: 
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 (A18) 

Next, the reference pressure head is defined as: 

h
p
go

=
ρ

 (A19) 

where h is the reference pressure head (L) and ρo is the reference water density 
(M/L3). 

Substituting Equation (A19) into Equation (A18) gives: 
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Dividing Equation (A20) by ρo and rearranging yields: 
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 (A21) 

Defining the modified compressibilities of the media and water as 

′ =α αρ go

o

 (A22) 

′ =β βρ g  (A23) 

where α′ is the modified compressibility of the media (1/L) and β′ is the 
modified compressibility of the water (1/L).  Substituting Equations (A22) and 
(A23) into Equation (A21) and rearranging: 
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Defining the storage coefficient as: 

F
n

n
dS
dh

= ′ + ′ +α
θ

β θ  (A25) 

where F is the storage coefficient.  Substituting Equation (A25) into Equation 
(A24) and following Frind (1982) by neglecting the second term on the right side 
of Equation (A24), 
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Defining the relation: 

K
k

=
ρ
μ
g

 (A27) 

where K is the hydraulic conductivity tensor.  Substituting Equation (A27) into 
Equation (A26) and rearranging gives the density-dependent flow equation: 
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From Darcy’s law: 

(V
k

= − ⋅ ∇ + ∇
1
ρ
ρ
μ

ρp g z)  (A29) 

where V is the Darcy flux (L/T).  Recalling Equation (A19) and substituting into 
Equation (A29) gives: 

(V
k
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1
ρ
ρ
μ

ρ ρog h g z)  (A30) 
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Rearranging Equation (A30): 

V
k

= − ⋅ ∇ + ∇
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⎝
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⎟

ρ
μ

ρ
ρ

g
h zo  (A31) 

and substituting Equation (A27) into Equation (A31), we get the Darcy flux 
equation for density-dependent flow in its final form: 

V K= − ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟

ρ
ρ

o h z  (A32) 

The density and dynamic viscosity are functions of chemical concentration 
and are assumed to take the following form: 

ρ
ρo

a a C a C a C= + + +1 2 3
2

4
3  (A33) 

and 

μ
μ o

a a C a C a C= + + +5 6 7
2

8
3  (A34) 

where C is the chemical concentration (M/L3) and a1, a2, ..., a7, a8 are the 
parameters (L3/M) that are used to describe the concentration dependence of 
water density and dynamic viscosity. 

In the specific case of seawater intrusion, the constitutive relation between 
fluid density and concentration takes the following form: 

(ρ ρ ε= +o c1 )  (A35) 

where c is the dimensionless chemical concentration (the actual one divided by 
the maximum one) and ε is the dimensionless density reference ratio defined as: 

ε
ρ
ρ

= −max

o
1 (A36) 

where ρmax is the maximum density of the fluid (M/L3) and ρo is the reference 
(freshwater) density (M/L3).  It should be noted that Equation (A36) implicitly 
assumes that the fluid is incompressible and under isothermal conditions (Galeati, 
Gambolati, and Neumann, 1992). 
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The initial conditions for the flow equations are stated as: 

( )h h x y z in Ri= , ,  (A37) 

where R is the region of interest and hi is the prescribed initial condition for 
hydraulic head.  The specification of boundary conditions is probably the most 
critical and complex chore in flow modeling.  As explained by Yeh (1987), the 
boundary conditions of the region of interest can be examined from a dynamic, 
physical, or mathematical point of view.  From a dynamic standpoint, a boundary 
segment can be considered either as impermeable or flow-through.  On the other 
hand, from a physical point of view, such a segment could be classified as a soil-
soil interface, soil-air interface, or soil-water interface.  Lastly, from a 
mathematical point of view, the boundary segment can be classified as one of 
four types of boundary conditions, namely as (a) Dirichlet, (b) gradient flux, (c) 
flux, or (d) variable boundary conditions.  In addition, a good numerical model 
must be able to handle these boundary conditions when they vary on the 
boundary and are either abruptly or gradually time-dependent. 

The Dirichlet boundary condition is usually applied to soil-water interfaces, 
such as streams, artificial impoundments, and coastal lines, and involves 
prescribing the functional value on the boundary.  The gradient flux boundary 
condition, on the other hand, involves prescribing the gradient of the function on 
the boundary and does not occur very often in real-world problems.  This 
condition, however, can be encountered at the base of the media where natural 
drainage occurs.  The third type of boundary condition, the flux boundary 
condition, involves prescribing the total normal flux due to the gradient on the 
boundary.  Usually surface water bodies with known infiltration rates through the 
bottom layers of their sediments or liners into the subsurface media are 
administered this boundary condition.  If a soil-air interface exists in the region 
of interest, a variable boundary condition is employed.  In such a case, either 
Dirichlet or flux boundary conditions dominate, mainly depending on the 
potential evaporation, the conductivity of the media, and the availability of water 
such as rainfall (Yeh 1987a). 

From this discussion, four types of boundary conditions can be specified for 
the flow equations depending on the physical location of the boundaries: 

a. Dirichlet boundary conditions: 

  (A38) h h x y z t on Bd b b b d= ( , , , ) ,

b. Gradient flux boundary conditions: 
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c. Flux boundary conditions: 
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d. Variable boundary conditions - during precipitation period: 

  (A41) ( )h h x y z t on Bp b b b v= , , , ,

or 

 ( )− ⋅ ⋅ ∇ + ∇
⎛
⎝
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⎟ =n K

ρ
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o
p b b b vh z q x y z t on B, , , , (A42) 

e. Variable boundary conditions - during nonprecipitation period: 

 , (A43) ( )h h x y z t on Bp b b b= , , , v

or 

 , (A44) ( )h h x y z t on Bm b b b v= , , ,

or 

 ( )− ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =n K

ρ
ρ

o
e b b b vh z q x y z t on B, , , , (A45) 

f. River boundary conditions: 
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where 

n = outward unit vector normal to the boundary 

(xb, yb, zb) = spatial coordinate on the boundary 

hd = Dirichlet functional value 

qh = Gradient flux value 

qc = Flux value 

Bd = Dirichlet boundary 

Bn = Gradient flux boundary  

Bc  = Flux boundary 

Bv = variable boundary 

hp = ponding depth on the variable boundary 

qp = throughfall of precipitation on the variable boundary 

hm = minimum pressure on the variable boundary 

qe = evaporation rate (potential evaporation) on the variable boundary 

KR = hydraulic conductivity of the river bottom sediment layer 

bR = thickness of the river bottom sediment layer 

hR = depth of the river bottom measured from the river surface. 

Note that only one of Equations (A41)-(A45) is utilized at any point on the 
variable boundary at any time. 

Governing Equations for Transport 

The governing equations for material transport through groundwater systems 
are derived based on the laws of continuity of mass and flux.  The major 
processes that are included are advection, dispersion/diffusion, decay, adsorption, 
biodegradation through both liquid and solid phases, the compressibility of 
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media, as well as source(s)/sink(s).  Let C be the dissolved concentration and S 
be the adsorbed concentration.  The governing equation of the spatial-temporal 
distribution of dissolved concentrations can be obtained by applying this 
principle of mass balance in integral form as follows:  

( ) ( )

(

( )

D
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C S dv n C d

d K C K S dv

C S dv m dv
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w b s
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v v
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− ⋅ − +

− + +

∫ ∫

∫ ∫
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n J
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Γ

Γ

Γ

)  (A47) 

where 

v = material volume containing constant amount of media (L3) 

C = dissolved concentration (M/L3) 

S = adsorbed concentration (M/M) 

ρb = bulk density of the medium (M/L3) 

Γ = surface enclosing the material volume v (L2) 

n = outward unit vector normal to the surface G 

Vfs = fluid velocity relative to the solid (L/T) 

J = surface flux with respect to fluid velocity V  [(M/T)/L2] fs

Kw = first-order biodegradation rate constant through dissolved phase (1/T) 

Ks = first-order biodegradation rate constant through adsorbed phase (1/T) 

λ = decay constant (1/T) 

m = external source/sink rate per medium volume [(M/L3)/T] 

By the Reynolds transport theorem (Owczarek 1964), Equation (A47) can be 
written as 

( ) ( )[ ] ( )
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 (A48) 
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where Vs is the velocity of the solid.  The fluid velocity relative to the solid Vfs 
and Darcy velocity V are related to each other by 

V Vfs= θ  (A49) 

Applying the Gaussian divergence theorem to Equation (A48) and using the 
fact that v is arbitrary, one can obtain the following continuity in differential 
form: 

( ) ( )[ ] ( )
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 (A50) 

The second term of Equation (A50) can be expressed as 

( )[ ] ( ) ( )∇ ⋅ + = ∇ + ⋅ + + ∇ ⋅V Vs sθ ρ θ ρ θ ρC S C S C Sb b b Vs  (A51) 

The first term on the right side of Equation (A51) is the product of two small 
vectors and will be neglected.  If all the displacement of the medium is assumed 
to be vertical (e.g., vertical consolidation), the solid velocity becomes 

∇⋅ =Vs α
∂
∂

p
t

 (A52) 

The surface flux J has been postulated to be proportional to the gradient of C 
(Nguyen et al. 1982) as 

J D= − ⋅∇θ C  (A53) 

( )θD V VV V= + − +a a a aT L T mδ / θτδ  (A54) 

where 

aT = transverse diffusivity (L) 

δ = Kronecker delta tensor 

|V| = magnitude of the Darcy velocity V (L/T) 

aL = longitudinal diffusivity (L) 
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am = molecular diffusion coefficient (L2/T) 

τ = tortuosity 

Substitution of Equations (A51) through (A54) into Equation (A50) yields 
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 (A55) 

Equation (A55) is simply the statement of mass balance over a differential 
volume.  The first term represents the rate of mass accumulation, the second term 
represents the net rate of mass flux due to advection, the third term is the net 
mass flux due to dispersion and diffusion, the fourth term is the rate of mass 
production and reduction due to consolidation and radioactive decay, the fifth 
term is the degradation rate due to microbial transformation through aqueous and 
adsorbed phases, and the last term is a source/sink term corresponding to 
artificial injection and or withdrawal. 

Equation (A55) is written in conservative form.  Using the advective form is 
sometimes more appropriate, especially if the finite element method is used to 
simulate the chemical transport equation.  More importantly, an advective form 
of the transport equations allows one to use the mixed Lagrangian-Eulerian 
approach, which can better solve advection-dominant transport problems (Yeh 
and Tripathi 1987).  Therefore, an advective form of the transport equation is 
derived by expanding the advection term and using the continuity equation for 
water flow.  The water flow equation can be rewritten in the following form: 
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 (A56) 

which is conservation of fluid mass.  Substituting Equation (A56) into (A55) and 
performing the necessary manipulation gives 



 

102  Appendix A  Mathematical Formulation 

( )

( ) ( )

θ
∂
∂

ρ
∂
∂

θ

α
∂
∂

λ θ ρ θ ρ

ρ
ρ

∂
∂

ρ
ρ

ρ
ρ

∂θ
∂

C
t

S
t

C C

h
t

C S K C K S

m qC F
h
t t

C

b

b w b s

o

o

+ + ⋅∇ − ∇ ⋅ ⋅∇ =

− ′ +
⎛
⎝
⎜

⎞
⎠
⎟ + − +

− + + ⋅∇
⎛
⎝
⎜

⎞
⎠
⎟ −

⎛

⎝
⎜

⎞

⎠
⎟

∗

V D

V

+

d

 (A57) 

Equation (A57) involves two unknowns C and S, so constitutive 
relationships must be posed.  For the present model, the following empirical 
relationships are used: 

S K C for linear isotherm=  (A58) 

S
KC
KC

for Langmuir isotherm=
+

smax

1
 (A59) 

S KC for Freundlich isothermn=  (A60) 

where 

Kd = distribution coefficient (L3/M) 

smax = maximum concentration of the medium in the Langmuir nonlinear 
isotherm 

K = coefficient in the Langmuir or Freundlich nonlinear isotherm 

n = power index in the Freundlich nonlinear isotherm. 

In order to use the Lagrangian-Eulerian approach, Equation (A57) is 
rewritten as:  

a. For Linear Isotherm model: 
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b. For Langmuir and Freundlich models: 
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V
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f
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θ
 (A64) 

where  

( ) ( )D
Dt

D
Dt

v vd fand   

denote the material derivatives of ( ) with respect to time in reference to the 
retarded velocity Vd  and fluid velocity Vf, respectively. 

To complete the description of the hydrological transport as given by 
Equations (A61) or (A63), initial and boundary conditions must be specified in 
accordance with dynamic and physical considerations.  It will be assumed that 
initially the dissolved concentrations are known throughout the region of interest, 
that is,  
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( )C C x y z in Ri= , ,  (A65) 

where Ci is the initial concentration and R is the region of interest.  Initial 
concentrations for the dissolved concentrations may be obtained from field 
measurements or by solving the steady-state version of Equation (A61) or (A63) 
with time-invariant boundary conditions. 

The specification of boundary conditions is a difficult and intricate task in 
transport modeling.  From the dynamic point of view, a boundary segment may 
be classified as either flow-through or impervious.  From a physical point of 
view, it is a soil-air interface, soil-soil interface, or soil-water interface.  From the 
mathematical point of view, it may be treated as a Dirichlet boundary on which 
the total analytical concentration is prescribed, a gradient flux boundary on 
which the flux due to the gradient of total analytical concentration is known, or a 
flux boundary on which the total flux is given.  An even more difficult 
mathematical boundary is the variable boundary conditions on which the 
boundary conditions are not known a priori but are themselves the solution to be 
sought.  In other words,  on the mathematically variable boundary,  either 
gradient flux or flux conditions may prevail and change with time.  Which 
condition prevails at a particular time can be determined only in the cyclic 
processes of solving the governing equations (Freeze 1972a, 1972b; Yeh and 
Ward 1980; Yeh and Ward 1981). 

Whatever point of view is chosen, all boundary conditions eventually must 
be transformed into mathematical equations for quantitative simulations.  Thus, 
we will specify the boundary conditions from the mathematical point of view in 
concert with dynamic and physical considerations.  The boundary conditions 
imposed on any segment of the boundary are taken to be either Dirichlet, gradient 
flux, flux, or variable.  Thus, the global boundary may be split into four parts, Bd, 
Bn, Bc, and Bv, denoting Dirichlet, gradient flux, flux, and variable boundaries, 
respectively.  The conditions imposed on the first three types of boundaries are 
given as: 

a. Prescribed concentration (Dirichlet) boundary conditions: 

  (A66) C C x y z t on Bd b b b d= ( , , , )

b. Gradient flux boundary conditions: 

  (A67) ( )n D⋅ − ⋅∇ =θ C q x y z t on Bb b b b n( , , , )

c. Flux boundary conditions: 
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B  (A68) ( )n V D⋅ − ⋅∇ =C C q x y z t onc b b b cθ ( , , , )

where 

Cd = concentration on the Dirichlet boundary Bd 

(xb,yb,zb) = spatial coordinate on the boundary 

n = outward unit vector normal to the boundary 

qn = gradient flux through the gradient flux boundary Bn 

qc = total flux through the flux boundary Bc 

The conditions imposed on the variable-type boundary, which is normally 
the soil-air interface or soil-water interface, are either a zero gradient flux or a 
given total flux.  The former is specified when the water flow is directed out of 
the region from the faraway boundary, whereas the latter is specified when the 
water flow is directed into the region.  This type of variable condition would 
normally occur at flow-through boundaries.  Written mathematically, the variable 
boundary condition is given by 

( )
( )

n V D n V n V

n D n V

⋅ − ⋅∇ = ⋅ ⋅ ≤

⋅ − ⋅∇ = ⋅ >

C C C x y z t on B if

C on B if
v b b b v

v

θ

θ

( , , , ) 0

0 0
 (A69) 

where Cv is the specified concentration of water through the variable boundary 
and Bv is the variable boundary. 
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Appendix B Numerical 
Formulation 

 

Introduction 

The initial-boundary value problem described by the governing equations of 
the flow and transport modules of FEMWATER along with the boundary 
conditions cannot, in general, be solved analytically using applied mathematics.  
Hence, in order to solve these sets of governing equations, numerical methods are 
the only mathematical tools capable of handling this task.  Although there are 
many different numerical approximation methods capable of reducing partial 
differential equations to simpler systems of algebraic equations, there are only 
two numerical methods that are most common and that can be employed to solve 
the most basic form of the governing equations.  These are the finite difference 
and finite element methods. 

The basic difference between the finite difference and finite element methods 
is that the finite element method is based upon approximating the function, while 
the finite difference method is founded upon approximating the derivatives of the 
function.  Therefore, the finite difference method produces solutions only at 
discrete points, while the finite element method yields spatially continuous 
solutions. 

Also, the finite element method offers numerous advantages over the finite 
difference method: 

a.  Anisotropy and heterogeneity of aquifers are easily taken care of. 

b.  Formulation of special formulae to incorporate irregular boundaries is 
unnecessary. 

c.  Computer storage and computational time can sometimes be saved 
because often fewer nodal points are needed to portray the region of 
interest to the same level of accuracy. 
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d.  Irregular grids for handling different levels of spatial discretization in 
different sections of the region of interest can be incorporated. 

e.  The integral formulation used in this method permits the flux types of the 
boundary conditions to come about naturally (Yeh 1987). 

Thus, the finite element method is used in this model.  The theoretical 
background as well as numerical procedures of this method can be found in any 
good finite element method book, such as Istok (1989), and therefore will not be 
described here.  A brief summary of the numerical procedure for applying the 
finite element method can be found in Yeh (1987). 

The flow module of FEMWATER includes three options for solving the 
finite element equations.  In other words, there are three iteration methods for 
solving the linearized matrix equations: successive point iteration, polynomial 
preconditioned conjugate gradient, and incomplete Cholesky preconditioned 
conjugate gradient.  Direct elimination methods are not used in this report 
because they are impractical in dealing with large three-dimensional problems.  
Because the Newton-Raphson method will yield a nonsymmetric matrix, the 
Picard method is used to linearize the matrix equation. 

To handle a large variety of possible problems, the flow module for 
FEMWATER contains 12 optional numerical schemes.  Specifically, the mixture 
of schemes includes the combinations of (a) the three options for solving the 
resulting matrix equation as mentioned in the previous paragraph, (b) two options 
(lumping and consistent) for handling the mass matrix resulting from the storage 
term, and (c) two options (time-weighted difference and middifference) for 
approximating the time derivatives.  The theoretical background for (b) and (c) 
may also be found in any respectable matrix computation book and in Yeh 
(1991). 

The transport module for FEMWATER also includes these 16 options, plus 
more.  While the Galerkin finite element method is used in the flow module, an 
option of two conventional finite element methods (Galerkin and upstream 
weighting) or the alternative option of a hybrid Lagrangian-Eulerian finite 
element method is provided in the transport module.  The main difference 
between the two conventional finite element methods is that while the Galerkin 
finite element method uses the base functions as the weighting functions, the 
upstream weighting finite element method uses weighting functions different 
from the base functions.  The advantages of using the upstream weighting finite 
element method over the Galerkin finite element method become apparent when 
the advection terms in the transport governing equation are equally important to 
the dispersion terms (Yeh and Ward 1981).  More details of the two conventional 
finite element methods may be found in Yeh and Ward (1981). 
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)

Numerical Approximation of the Flow Equations 

Spatial discretization with the Galerkin finite element method 

When using the finite element method, the referenced pressure head is 
approximated by: 

( ) (h h h t N x y zj
j

N

j≈ =
=
∑$ , ,

1
 (B1) 

where 

hj = amplitude of h at nodal point j 

Nj =  base function at nodal point j 

N = total number of nodes 

After defining a residual and forcing the weighted residual to zero, the flow 
equation, Equation (A28), is approximated as: 

( ) ( )

( )

N FN dR
dh
dt

N N dR

N qdR N z dR

h z N dB i N

i
o

j
R

j

j

N

i j
R

j
j
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oR

i
R o

B o
i
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ρ

ρ
ρ

ρ
ρ

ρ
ρ
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∫ ∫

∫
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⎣
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⎤

⎦
⎥ + ∇ ⋅ ⋅ ∇

⎡

⎣
⎢

⎤

⎦
⎥

= − ∇ ⋅ ⋅ ∇
⎛
⎝
⎜

⎞
⎠
⎟

+ ⋅ ⋅ ∇ + ∇
⎛
⎝
⎜

⎞
⎠
⎟ =

= =

∗

1 1

1

K

K

n K ,...,

h

 (B2) 

In matrix form, Equation (B2) is written as: 

[ ] [ ]{ } { } { } { }M
dh
dt

S h Q G B⎧
⎨
⎩

⎫
⎬
⎭
+ = + +  (B3) 

where 

{dh/dt} = column vectors containing the values of dh/dt at all nodes 

{h} = column vectors containing the values of h at all nodes 

[M] = mass matrix resulting from the storage term 
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[S] = stiff matrix resulting from the action of conductivity 

{Q} = load vectors from the internal source/sink 

{G} = load vectors from the gravity force 

{B} = load vectors from the boundary conditions 

Furthermore, the mass matrix, [M], and stiff matrix, [S], are described as: 

M N FNij
e

Re M o

e

ee

= ∫∑
∈

α β

ρ
ρ

dR  (B4) 

and 

( ) ( )S N Nij
e

Re M

e

ee

= ∇ ⋅ ⋅ ∇∫∑
∈

α βK dR  (B5) 

where Re is the region of element e, Me is the set of elements that have a local 
side α-β coinciding with the global side i-j, and Nα

e is the α-th local base 
function of element e. 

In addition, the three load vectors, {Q}, {G}, and {B}, are described as: 

Q N qdRi
e

Re M oee

= ∫∑
∈

α

ρ
ρ

 (B6) 

( )G Ni
e

Re M oee

= − ∇ ⋅ ⋅ ∇∫∑
∈

α zdR
ρ
ρ

K  (B7) 

and 

B N h zi
e

oBe N ese

= − ⋅ − ⋅ ∇ + ∇
⎧
⎨
⎩

⎫
⎬
⎭

⎡

⎣
⎢

⎤

⎦
⎥∫∑

∈
α

ρ
ρ

n Κ dB  (B8) 

where Nse is the set of boundary segments that have a local node a coinciding 
with the global node i, and Be is the length of boundary segment e. 

In most finite element work, the Darcy velocity components given in 
Equation (A32) are calculated numerically by taking the derivatives of the 
simulated h as  
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( )V K= − ⋅ ∇ + ∇
⎛

⎝
⎜

⎞

⎠
⎟

=
∑ρ

ρ
o

j j
j

N

N h z
1

 (B9) 

This formulation results in a velocity field that is not continuous at element 
boundaries and nodal points if the variation of h is other than linear or constant.  
The alternative approach would be to apply the Galerkin finite element method to 
Equation (A32); thus one obtains 

[ ]{ } { }T V Dx = x

y

z

dR

 (B10) 

[ ]{ } { }T V Dy =  (B11) 

[ ]{ } { }T V Dz =  (B12) 

where the matrix [T] and the load vectors {Dx}, {Dy}, and {Dz} are given by 

T N Nij
e e

Re M ee

= ∫∑
∈

α β  (B13) 

D N h zxi
e o

Re M ee

= − ⋅ ⋅ ∇ + ∇
⎧
⎨
⎩

⎫
⎬
⎭

∫∑
∈

α

ρ
ρ

i K dB  (B14) 

D N h zyi
e o

Re M ee

= − ⋅ ⋅ ∇ + ∇
⎧
⎨
⎩

⎫
⎬
⎭

∫∑
∈

α

ρ
ρ

j K dB (B15) 

D N h zzi
e o

Re M ee

= − ⋅ ⋅ ∇ + ∇
⎧
⎨
⎩

⎫
⎬
⎭

∫∑
∈

α

ρ
ρ

k K dB (B16) 

where Vx, Vy, and Vz are the Darcy velocity components along the x-, y-, and z-
directions, respectively; and i, j, and k are the unit vectors along the x-, y-, and z-
coordinates, respectively. 

The reduction of the partial differential equation (Equation (A28)) to the set 
of ordinary differential equations (Equation (B3)) simplifies the evaluation of 
integrals on the right side of Equations (B4) through (B8) for every element for 
boundary surface e.  The major tasks that remain to be done are the specification 
of base and weighting functions and the performance of integration to yield the 
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element matrices.   Linear hexahedral elements are employed in this 
documentation. 

Base and weighting functions 

The construction of base functions for hexahedral elements is best 
accomplished using the local coordinates (ξ,η,ζ).  In the local coordinates, the 
original hexahedral element is mapped into a cubic whose corners are located at ξ 
= ±1, η = ±1, and ζ = ±1 as shown in Figure B1.  

For trilinear hexahedral elements, the eight base functions are obtained by 
taking the tensor product of the three base functions of the linear line elements as 

( ) ( )( )( )N ii i i iξ η ζ ξξ ηη ζζ, , , , , ...,= + + + =
1
8

1 1 1 1 2 8  (B17) 

Because the Galerkin finite element method is used to solve the flow equations, 
the set of eight weighting functions is taken as the same set of eight base 
functions. 

Numerical integration 

To complete the reduction of the partial differential equation (Equation (B3)) 
to the ordinary differential equation (Equation (B3)), one has to evaluate the 
integrals on the right sides of Equations (B4)-(B8) for every element to yield the 
element mass matrix [Me] and the stiff element matrix [Se] as well as the element 
gravity column vector {Ge}, the source/sink column vector {Qe}, and the 
boundary column vector {Be} as 

M N FN de e

o

e

Re

αβ α β

ρ
ρ

= ∫ R

dR

 (B18) 

( ) ( )S N Ne e e

Re

αβ α β= ∇ ⋅ ⋅ ∇∫ K  (B19) 

Q N qdRe e

oRe

α α

ρ
ρ

=
∗

∫  (B20) 

( )G Ne e

R oe

α α zdR
ρ
ρ

= − ∇ ⋅ ⋅ ∇∫ K  (B21) 
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Figure B1.  A hexahedral element in local coordinates 
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⎭

⎡
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⎥∫ n K dB

)

)

)

 (B22) 

Since Equations (B18)-(B22) are written in global coordinates and the base 
functions are defined in local coordinates, a transformation between the global 
and local coordinates is needed.  The required transformation is obtained via the 
base functions as 

(x x Nj j
j

=
=
∑ ξ η ζ, ,

1

8

 (B23) 

(y y Nj j
j

=
=
∑ ξ η ζ, ,

1

8

 (B24) 

(z z Nj j
j

=
=
∑ ξ η ζ, ,

1

8

, (B25) 



 

114  Appendix B  Numerical Formulation 

Because the coordinate transformation uses the base functions, the element is 
termed an “isoparametric” element. 

Using the transformation in Equations (B23)-(B25), differentiation of the 
base function with respect to the global coordinate can be changed to 
differentiation with respect to the local coordinate by 

[ ]
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 (B26) 

where [J] is the Jacobian of the transformation and J = |[J]|.  In the mean time, a 
differential volume written in the local coordinate becomes 

dR Jd d d
e
∫ ∫∫∫=

−−−

ξ η ζ
1

1

1

1

1

1

 (B27) 

With Equations (B26) and (B27), all the integrals in Equations (B18)-(B21) can 
be reduced to the following form 

( )f Jd dξ η ζ ξ η ζ, ,
−−−
∫∫∫
1

1

1

1

1

1

d  (B28) 

the integration of which can easily be carried out with a 2 × 2 × 2 = 8 point 
Gaussian quadrature.  The surface integration of Equation (B22) in three-
dimensional space is not as straightforward as in two-dimensional space.  This 
integration requires further elaboration.  Any surface integral of a continuous 
function F(x,y,z) specified on the surface S (Figure B2) can be reduced to the 
area integration.  Let I represent the surface integral: 
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S( )I F x y z d
S

= ∫ , ,  (B29) 

where the surface S is given by the following equation: 

ξ=ξο

δr
δη dη

η=ηο

δr
δξ dξ
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0
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Figure B2.  A surface area and its imbedded local coordinates 

(z f x y= , )

k

 (B30) 

Let P be any point on the surface S with coordinates (x,y,z) or (ξ,η) (Figure B2).  
Then the vector r from O to P is given by 

r i j= + +x y z  (B31) 

The tangent vectors to the coordinate curves ξ = ξo and η = ηo on the surface S 
are ∂r/∂η and ∂r/∂ξ, respectively.  The area dS is given by: 

dS d d= ×
∂
∂ ξ

∂
∂ η

ξ η
r r

 (B32) 
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where × represents vector multiplication.  But 
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 (B33) 

so that 

dS J J J d dx y z= + +2 2 2 ξ η  (B34) 

where 

J
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Substituting Equation (B34) into Equation (B29) gives 

( ) ( )F x y z dS J J J d d
S

x y z, , ,= + +
−−
∫∫∫ φ ξ η ξ η
1

1

1

1
2 2 2  (B36) 

where 

( ) ( ) ( ) ( )(φ ξ η ξ η ξ η ξ η, , , , ,= F x y z ),  (B37) 

The surface integral in Equation (B36) can easily be computed by Gaussian 
quadrature. 

Mass lumping option 

Referring to [M], one may recall that this is a unit matrix if the finite 
difference formulation is used in spatial discretization.  Hence, by proper scaling, 
the mass matrix can be reduced to the finite-difference equivalent by lumping 
(Clough 1971).  Mass lumping typically gives better stability but less accuracy 
than no lumping.  However, lumping can give more accurate and stable solutions 
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if it is used in conjunction with the central or backward-difference time marching 
(Yeh and Ward 1980).    Therefore, options are provided for the lumping of the 
matrix [M].  More explicitly, [M] will be lumped according to: 

M N FN dR ifij
e

o

e

Re M ee

=
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⎝
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⎞

⎠
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=∈
α β
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ρ1

8

j i,

i≠

 (B38) 

and 

M if jij = 0  (B39) 

Finite difference approximation in time 

Next, a matrix equation is derived by integrating Equation (B3).  For the time 
integration of Equation (B3), the load vector {B} will be ignored.  This load 
vector will be discussed in the next section on the numerical implementation of 
boundary conditions.  An important advantage of finite element approximations 
over the finite difference approximations is the inherent ability to handle 
complex boundaries and obtain the normal derivatives therein.  In the time 
dimension, such advantages are not evident.  Thus, finite difference methods are 
typically used in the approximation of the time derivative.  Two time-marching 
methods are adopted in the present flow model. 

The first one is the time-weighted method written as: 

[ ] { } { }( ) [ ]{ } ( )[ ]{ }

{ } { }

M
t

h h S h S

Q G

t t t t t tΔ Δ Δ+ +− + + −

= +

ω ω1 h
 (B40) 

where [M], [S], {Q}, and {G} are evaluated at (t + wΔt).  In the Crank-Nicolson 
centered-in-time approach, w = 0.5; in the backward-difference (implicit 
difference), w = 1.0; and in the forward-difference (explicit scheme), w = 0.0.  
The central-Nicolson algorithm has a truncation error of O(Δt2), but its 
propagation-of-error characteristics frequently lead to oscillatory nonlinear 
instability.  Both the backward-difference and forward-difference have a 
truncation error of O(Δt).  The backward-difference is quite resistant to 
oscillatory nonlinear instability.  On the other hand, the forward difference is 
only conditionally stable even for linear problems, not to mention nonlinear 
problems. 

In the second method, the values of unknown variables are assumed to vary 
linearly with time during the time interval, Δt.  In this middifference method, the 
recurrence formula is written as: 
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[ ] [ ] { } [ ]{ } { } { }2 2
2Δ ΔΔt

M S h
t

M h Q Gt t t+⎛
⎝⎜

⎞
⎠⎟ − =+ / +  (B41) 

and 

{ } { } { }h ht t t t t+ += −Δ Δ2 2/ h  , (B42) 

where [M], [S], and {Q} are evaluated at (t + Δt/2). 

Equations (B40) and (B41) can be written as a matrix equation 

[ ]{ } { }T h Y= ,  (B43) 

where [T] is the matrix, {h} is the unknown vector to be found and represents the 
values of discretized pressure field at a new time, and {Y} is the load vector.  
Take, for example, Equation (B40) with w = 1.0.  [T] and {Y} represent the 
following: 

[ ] [ ] [ ]T
M

t
S= +

Δ
,  (B44) 

and 

{ } [ ] { } { } { }Y
M

t
h Q Gt= + +

Δ
 (B45) 

where {h} is the vector of the discretized pressure field at a previous time. 

Numerical implementation of boundary conditions 

The following steps are the incorporation of boundary conditions into matrix 
equations by the finite element method.  For the flux boundary condition given 
by Equation (A40), simply substitute Equation (A40) into Equation (B22) to 
yield a boundary-element column vector {Bc

e} for a flux segment: 

{ } { }B qc
e

c
e=  (B46) 

where {qc
e} is the flux boundary vector given by 
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q N q dBc
e e

o
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α α

ρ
ρ

α= − =∫ , , ...,1 4  (B47) 

The flux boundary vector represents the normal fluxes through the two nodal 
points of the segment Be on Bc.  For the gradient flux boundary condition given 
by Equation (A39), substitute Equation (A39) into Equation (B22) to yield a 
boundary-element column vector {Bn

e} for a gradient flux segment: 

{ } { }B qn
e

n
e=  (B48) 

where {qna
e} is the gradient flux boundary flux vector given by:  
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⎟ =∫ ; ,..1 .,4  (B49) 

which is independent of pressure head. 

The implementation of variable-type boundary conditions is more involved.  
During the iteration of boundary conditions on the variable boundary, one of 
Equations (A41) through (A45) is used at a node.  If either Equation (A42) or 
(A45) is used, substitute it into Equation (B22) to yield a boundary element 
column vector {Bv

e} for a variable boundary segment: 

{ } { }B qv
e

v
e=  (B50) 

where {qv
e} is the variable boundary flux given by: 
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; , ...,1 4
 (B51) 

Assembling over all gradient flux, flux, and variable boundary segments yields 
the global boundary column vector {B} as: 

{ } { }B q=  (B52) 

in which 
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{ } { } { } { }q q qn
e

e N
c
e

e N
v
e

e Nne ce ve

= + +
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∑ ∑ q∑  (B53) 

where Nne, Nce, and Nve are the number of gradient flux boundary segments, flux 
boundary segments, and variable boundary segments with flux conditions 
imposed on them, respectively.  The boundary flux {B} given by Equations 
(B52) and (B53) should be added to the right side of Equation (B43). 

For the river boundary condition given by Equation (A46), simply substitute 
Equation (A46) into Equation (B22) to yield a boundary-element column vector 
{BR

e} and boundary matrix [BR
e] for a river boundary segment: 

{ } { } [ ] [ ]B q and B bR
e

r
e

R
e

r
e= =  (B54) 

where {qr
e} and {br

e} are the contribution of the flux boundary to the right and 
left sides of the matrix equation, respectively.  They are given by 
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 (B55) 

At nodes where Dirichlet boundary conditions are applied, an identity 
equation is generated for each node and included in the matrices of Equation 
(B43).  The Dirichlet nodes include the nodes on the Dirichlet boundary and the 
nodes on the variable boundary to which either Equation (A41), (A43), or (A44) 
is applied. 

After time discretization of Equation (B3) and incorporation of boundary 
conditions, the following matrix equation is obtained 

[ ]{ } { }C h R=  (B56) 

where [C] is the coefficient matrix and {R} is the known vector of the right side.  
For the saturated-unsaturated flow simulation, [C] is a highly nonlinear function 
of the pressure head {h}. 

Solution of the matrix equations 

Equation (B56) is in general a banded sparse matrix equation.  It may be 
solved numerically by either direct or iteration methods.  In direct methods, a 
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single solution operation sequence is performed.  This would result in an exact 
solution except for round-off error.  In this method, one is concerned with the 
efficiency and magnitude of round-off error associated with the sequence of 
operations.  On the other hand, in an iterative method, one attempts to find a 
solution by a process of successive approximations.  This involves making an 
initial guess, then improving the guess by some iterative process until an error 
criterion is obtained.  Therefore, in this technique, one must be concerned with 
convergence, and the rate of convergence.  The round-off errors tend to be self-
corrected. 

For practical purposes, the advantages of direct methods are as follows: (a) 
the efficient computation when the bandwidth of the matrix [C] is small, and (b) 
the fact that no convergence problem is encountered when the matrix equation is 
linear or small convergence problems when the mass equation is nonlinear.  The 
disadvantages of direct methods are the excessive requirements on CPU storage 
and CPU time when a large number of nodes is needed for discretization.  On the 
other hand, the advantages of iterative methods are the efficiencies in terms of 
CPU storage and CPU time when large problems are encountered.  Their 
disadvantages are the requirements that the matrix [C] must be well conditioned 
to guarantee a convergent solution.  For three-dimensional problems, the 
bandwidth of the matrix is usually large; thus the direction solution method is not 
practical.  Only iterative methods are implemented in FEMWATER.  Four 
iteration methods are used in solving the linearized matrix equation: (a) block 
iteration, (b) successive point iteration, (c) polynomial preconditioned conjugate 
gradient method, and (d) incomplete Cholesky preconditioned conjugate gradient 
method. 

The matrix equation, Equation (B56), is nonlinear because both the hydraulic 
conductivity and the water capacity are functions of the pressure head h.  To 
solve the nonlinear matrix equation, two approaches can be taken: (a) the Picard 
method and (b) the Newton-Raphson method.  The Newton-Raphson method has 
a second order of convergent rate and is very robust.  However, the Newton-
Raphson method would destroy the symmetrical property of the coefficient 
matrix resulting from the finite element approximation.  As a result the solution 
of the linearized matrix equation requires extra care.  Many of the iterative 
methods will not give a convergent solution for the nonsymmetric linearized 
matrix equation.  Thus, the Picard method is used in this report to solve the 
nonlinear problems. 

In the Picard method, an initial estimate is made of the unknown {h}.  Using 
this estimate, the coefficient matrix [C] is then computed and the linearized 
matrix equation solved using linear algebra.  The new estimate is now obtained 
by the weighted average of the new solution and the previous estimate: 

{ } { } ( ){ }h h hk+ = + −1 1ω ω ,k  (B57) 

where 
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)

{hk+1} = new estimate 

{hk} = previous estimate 

{h} = new solution 

ω = iteration parameter 

The procedure is repeated until the new solution {h} is within a tolerance error.  
If ω is greater than or equal to 0 but is less than 1, the iteration is underrelaxation.  
If ω = 1, the method is the exact relaxation.  If ω is greater than 1 but less than or 
equal to 2,  the iteration is termed overrelaxation.  The underrelaxation should be 
used to overcome cases of non-convergence or slow convergence rates due to 
fluctuations rather than due to “divergent” computations.  Overrelaxation should 
be used to speed up the convergence rate when it decreases monotonically. 

In summary, there are sixteen optional numerical schemes here to deal with a 
wide range of problems.  These are the combinations of (a) two ways of treating 
the mass matrix (lumping and no-lumping); (b) two ways of approximating the 
time derivatives (time-weighting and middifference), and (c) four ways of 
solving the linearized matrix equation. 

Transport Equation 

Spatial discretization with the weighted residual finite element 
method 

Let Cj be approximated by a finite element interpolation as  

( ) (C C C t N x y zj j
j

N

≈ =
=
∑$ , ,

1
 (B58) 

Substituting Equation (B58) into Equations (A57), (A61), and (A63), and forcing 
a weighted residual to zero gives the following ordinary differential equations: 

a. For the conventional finite element approach: 
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b. For the Lagrangian-Eulerian approach with a linear isotherm: 
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c. For the Lagrangian-Eulerian approach with a nonlinear isotherm: 
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Equations (B59)-(B61) are written in matrix form as: 

a. For the conventional finite element approach: 

[ ] [ ] [ ] [ ]( ){ } { } { }M
dC
dt

A D K C Q B⎧
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b. For the Lagrangian-Eulerian approach with the linear isotherm: 
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c. For the Lagrangian-Eulerian approach with nonlinear isotherms: 
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where 

{C} = vector whose components are the concentrations at all nodes 

{dC/dt} = derivative of {C} with respect to time 

[M], [M1] = mass matrices associated with the material derivative term 
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[M2] = mass matrix associated with the partial derivative term 

[D] = stiff matrix associated with the dispersion term 

[A] = stiff matrix associated with the advection term 

[K] = stiff matrix associated with all the first-order terms 

{Q} = load vector associated with all zero-order derivative terms 

{B} = load vector associated with boundary conditions 

These matrices and vectors are given as: 

M N
dS
dC

N dRij
e

b
Re M

e

e

= +⎛
⎝⎜

⎞
⎠⎟∫∑

∈
α θ ρ β

dR

 (B65) 

M N Nij
e

Re M

e

e

1 = ∫∑
∈

α βθ  (B66) 

M N
dS
dC

N dRij
e

b
Re M

e

e

2 = ⎛
⎝⎜

⎞
⎠⎟∫∑

∈
α ρ β

dR

dRβ

 (B67) 

A N Nij
e

Re M

e

e

= ⋅∇∫∑
∈

α βV  (B68) 

D N Nij
e

Re M

e

e

= ∇ ⋅ ⋅∇∫∑
∈

α θD  (B69) 

K N

K K
dS
dC

h
t

dS
dC

q
n

h
t

N dRij
e

w b s

b

o

o

R

e

e M e

=

+⎛
⎝⎜

⎞
⎠⎟
+

+ +⎛
⎝⎜

⎞
⎠⎟

+ − +

− ⋅∇
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

∫∑
∈

α

θ ρ

α
∂
∂

λ θ ρ

ρ
ρ

α
θ

βθ
∂
∂

ρ
ρ

ρ
ρ

( )

*
( )

V

β  (B70) 



 

126  Appendix B  Numerical Formulation 

Q N
h
t

K S
dS
dC

C qC dRi
e

s b in
Re M e

= − + + −⎛
⎝⎜

⎞
⎠⎟ +

⎡

⎣
⎢

⎤

⎦
⎥∫∑

∈
α λ α

∂
∂

ρ( )  (B71) 

(B N Ci
e

Be M e

= − ⋅ − ⋅∇∫∑
∈
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where Cin is the concentration of the source. 

Base and weighting functions 

For the flow case, the weighting functions are taken as the same set as the 
base functions.  However, in the transport formulation using an Eulerian finite 
element approach, sometimes it is advantageous to use weighting functions 
which are one or two orders higher than the base functions: (N+1) or (N+2) 
upstream weighting.  This section will present only the N+1 upstream weighting 
functions.  Recently, the N+2 weighting functions have been the subject of 
several investigations.  The success of the N+2 weighting is still under 
investigation.  They will not be included here.  First define, for the line element, 
the following N+1 upstream weighting functions 

( ) ( ) ( )(F N1 1
3
4

1 1ξ α ξ α ξ ξ, = − + − )  (B73) 

( ) ( ) ( )(F N2 2
3
4

1 1ξ α ξ α ξ ξ, = + + − )  (B74) 

where α is the weighting factor along the line from node 1 to node 2 (Figure B3). 

α

1 2
 

Figure B3.  Weighting factor along a line element 

Then the weighting functions are obtained by an appropriate tensor product: 
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( ) ( ) ( )W F F F1 1 1 1 1 1 1= ξ α η β ζ γ, , ,  (B75) 

( ) ( ) ( )W F F F2 2 1 1 2 1 2= ξ α η β ζ γ, , ,  (B76) 

( ) ( ) ( )W F F F3 2 2 2 2 1 4= ξ α η β ζ γ, , ,  (B77) 

( ) ( ) ( )W F F F4 1 2 2 1 1 3= ξ α η β ζ γ, , ,  (B78) 

( ) ( ) ( )W F F F5 1 3 1 3 2 1= ξ α η β ζ γ, , ,  (B79) 

( ) ( ) ( )W F F F6 2 3 1 4 2 2= ξ α η β ζ γ, , ,  (B80) 

( ) ( ) ( )W F F F7 2 4 2 4 2 4= ξ α η β ζ γ, , ,  (B81) 

( ) ( ) ( )W F F F8 1 4 2 3 2 3= ξ α η β ζ γ, , ,  (B82) 

where α’s, β’s, and γ’s are the weighting factors along the side given in Figure 
B4. 

Numerical integration 

To reduce the partial differential equations, Equations (A57), (A61), and 
(A63) to ordinary differential equations, Equations (B62)-(B64), one has to 
evaluate the integrals on the right sides of Equations (B65)-(B72) for every 
element to yield the element mass matrices [Me], [M1

e], and [M2
e] and the stiff 

element matrices [Ae], [De], and [Ke] as well as the source/sink column vector 
{Qe} and the boundary column vector {Be} as: 
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Figure B4.  Upstream weighting factors along 12 sides of a hexahedral element 
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Following the procedures presented in the section “Numerical integration,” 
Equations (B83)-(B90) are first transformed in terms of local coordinates.  Then 
the resulting equations are integrated with Gaussian quadrature.  The 
transformation between the global and local coordinates is given by Equations 
(B23)-(B25) resulting in isoparametric elements.  The surface integration from 
the boundary conditions also follows that presented in “Numerical integration.” 

Mass lumping option 

As with the solution of the flow equations, a consistent mass matrix or mass 
lumping option can be used when the Eulerian approach is used.  Although a 
consistent mass matrix option can be used when the hybrid Lagrangian-Eulerian 
approach is taken, a mass lumping scheme is more appropriate and easier to 
implement. 

Finite difference approximation in time 

When the Eulerian approach is taken in approximating the governing 
equations, either time-weighted difference or middifference can be used as in the 
section “Finite difference approximation in time.”  However, when the 
Lagrangian-Eulerian approach is taken, the time integration is different from the 
flow problem.  Although there is still a choice of time-weighted difference or 
middifference, the time-weighted difference scheme is preferred.  In the 
following, the time integration for the Lagrangian-Eulerian approach is 
demonstrated.  As in the time integration of the flow equations, the boundary 
load vector will be ignored in the time integration of the transport equations in 
this section.  This load vector will be discussed in the next section. 

In the Lagrangian-Eulerian approach, Equations (B63) and (B64) are 
integrated along the characteristic lines.  First Equation (B63) will be integrated 
for the linear isotherm case.  Then Equation (B64) will be integrated for 
nonlinear isotherms.  The time-weighted integration of Equation (B63) yields 
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where Δτ is the time-step size (the determination of Δτ will be explained later), 
{Cn+1} is the concentration vector containing the concentration at all nodes at the 
new time n+1, and {C*} is the Lagrangian concentration vector.  The Lagrangian 
concentration {C*} is computed by the backward method of characteristics as 
follows. 
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 (B92) 

where xi* (the Lagrangian point) is the location of a fictitious particle originating 
at time t and arriving at the node xi at time t + Δt.  Ci(t) is the concentration value 
at node j at time t and Nj(xi*) is the interpolation function associated with node j 
evaluated at the Lagrangian point xi*.  If xi* is located in the interior of the 
region of interest, Δτ in Equation (B91) is defined as 

Δτ Δ= t  (B93) 

If Δx* is located outside the region of interest, a Δτ(xi*) as a function of xi* must 
be found such that 
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∗

∫ dt
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 (B94) 

will be located on the boundary.  Thus, it can be seen that Δτ is less than or equal 
to Δt. 

For the nonlinear isotherm case, Equation (B64) can be integrated  to yield 
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The computation of Δt and the Lagrangian concentrations C* in Equation (B95) 
follows Equations (B92)-(B94) but with Vd replaced by Vf. 
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Numerical implementation of boundary conditions 

To incorporate the boundary conditions, the right side of Equation (B90) 
must be evaluated for every boundary face Be to yield the load vector {Be}: 

( )B N C dBe e

Be

α α θ α= − ⋅ − ⋅∇ =∫ n D , , ..1 4  (B96) 

For the gradient flux boundary condition given by Equation (A67), simply 
substitute Equation (A67) into Equation (B90) to yield a boundary-element 
column vector {Bn

e} for a gradient flux face: 

{ } { }B qn
e

n
e=  (B97) 

where {qn
e} is the gradient flux boundary flux vector given by 

q N q dBn
e e

B
N

e

α α α= − =∫ , ,.1  (B98) 

This gradient flux boundary flux vector represents the normal fluxes through the 
two nodal points of the face Be on Bn. 

For the flux boundary condition given by Equation (A68), Equation (B90) 
may be rewritten in the following form: 

( )B N C C dB N CdBe e

B

e

Be e

α α αθ α= − ⋅ − ⋅∇ + ⋅ =∫ ∫n V D n V , , .1  (B99) 

The concentration on the boundary segment Be can be approximated by 

C C Ne=
=
∑ β β
β 1

4

 (B100) 

Substituting Equations (A68) and (B100) into Equation (B99) gives a boundary-
element column vector {Bc

e} for a flux face: 

{ } { } [ ]{ }B q V Cc
e

c
e

c
e= +  (B101) 

in which the flux boundary vector {qc
e} and the flux boundary matrix [Vc

e] from 
the normal velocity component are given by 
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, , ...,
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1 4

1 4 1 4n V
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Faces on which the variable boundary conditions are imposed are the flow-
through boundaries on which the flow direction is not known a priori.  When the 
flow is directed into the region, flux boundary conditions will be used.  The 
boundary element column vector {Bv

e} for a variable boundary segment can be 
obtained similarly to {Bc

e}: 

{ } { } [ ]{ }B q V Cv
e

v
e

v
e= +  (B103) 

in which the variable boundary flux vector {qv
e} and the variable boundary 

matrix [VV
e] from the normal velocity component are given by: 

{ } ( )q N C dB

V N N dB and

v
e e

in
B

v
e e

b

e

e

e

α α

αβ α β

α

α β

= − ⋅ =

= ⋅ = =

∫

∫

n V

n V

, ,...,

, ,..., ,...,

1 4

1 4 1 4
 (B104) 

where Cin is the total dissolved concentration of the incoming fluid.  When the 
flow is directed out from the region, both {qv

e} and [VV
e] are set equal to 0. 

Assembling over all gradient flux, flux, and variable boundary segments, the 
global boundary column vector {B} is obtained as: 

{ } { } [ ]{ }B q V C= +  (B105) 

in which  

{ } { } { } { }

[ ] { } { }

q q q

V V V

n
e

e N
c
e

e N
v
e

e N

c
e

e N
v
e

e N

ne ce ve

ce ve

= + +

= +

∈ ∈ ∈

∈ ∈

∑ ∑ q∑

∑ ∑
 (B106) 

where Nne, Nce, and Nve are the number of gradient flux, flux, and variable 
boundary segments, respectively. 

At nodes where Dirichlet boundary conditions are applied, an identity 
equation is generated for each node and included in the matrices of Equation 
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(B91) for the case of linear isotherms or Equation (B95) for the case of nonlinear 
isotherms.  The detailed method of applying this type of boundary condition can 
be found in Wang and Connor (1975). 

Boundary conditions need to be implemented in the computation of the 
Lagrangian concentrations {C*}.  Gradient flux boundary conditions are 
normally applied to the boundary when flow is directed out from the region of 
interest.  On the gradient flux boundary, the backtracking would locate xi* in the 
interior of the domain; hence the Lagrangian concentration at the ith gradient flux 
boundary node is simply computed via interpolation.  On the Dirichlet boundary 
nodes, the Lagrangian concentration is simply set to the specified value. 

On the variable boundary, boundary conditions need not be implemented if 
the flow is directed out from the region.  If the flow is directed into the region, 
the concentration of incoming fluid is specified.  An intermediate concentration 
C** is calculated according to 

C

N V C dB

N V dBi

i n in
B

i n
B

v

v

∗∗ =
−

−

∫

∫
,  (B107) 

where Ci** is the concentration due to the boundary source at the boundary node 
i, Vn is the normal vertically integrated Darcy’s velocity, and Cin is the 
concentration of the incoming fluid. 

Flux boundary conditions are normally applied to the boundary where flow is 
directed into the region, where the material flux of incoming fluid is specified.  
The intermediate concentration is thus calculated according to 

C
N q dB

N V dBi

i c
B

i n
B

c

c

∗∗ =
∫

∫
,  (B108) 

where Ci** is the concentration due to flux fluxes at the boundary node i, Vn is 
the normal Darcy’s velocity, and qc is the flux of the incoming fluid. 

The Lagrangian concentration is obtained by using the value Ci** and Ci
n 

(the concentration at previous time-step) as follows: 

( )C
N N C dB N K N C dB

N K dB
linear isothermi

i j j i b d j j
n

Bj

N

Bj

N

i b d
B

∗

∗∗

===
+

+
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∫

θ ρ

θ ρ
11  (B109) 
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C C for the nonlinear isothermi i
∗ ∗∗=  (B110) 

Solution of the matrix equations 

Because the Lagrangian-Eulerian approach results in a symmetric positive 
definite matrix, the system of algebraic equations can be solved by any of the 
four options:  block iteration, successive point iteration, polynomial 
preconditioned conjugate gradient, and incomplete Cholesky preconditioned 
conjugate gradient methods.  For the Eulerian approach, however, the block 
iteration and successive point iteration methods are the preferred choice for 
solving the matrix equation.  When the advection transport is dominant, the two 
basic iteration methods with underrelaxation are very effective in reducing the 
number of iterations required for a convergent solution (Yeh 1985). 
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Appendix C Output File 
Formats 

 

Introduction 

The output from FEMWATER consists of a printed output file and a number 
of solution files.  The printed output file is a text file listing a summary of the 
input, iteration and convergence data, and solution summaries.  The solution files 
are used for post-processing or as initial conditions for subsequent runs. The 
content and format of the solution files are described in this appendix. 

There are five solution files that can be output from FEMWATER: pressure 
head, nodal boundary fluid flux, nodal moisture content, velocity, and nodal 
concentration.  All of the files can be output in either binary or text format.  The 
options for selecting which files are to be output and which format is used are 
specified on the OC4 card in the model file (see section, “Save options (OC4),” 
in main text). 

Data Set Files 

The various output files are all written using the standard Department of 
Defense Groundwater Modeling System (GMS) data set file format.  The data set 
file formats are two of the standard file formats used by the GMS.  Multiple data 
sets, including both scalar and vector, can be included in one file.  However, the 
data set files used by FEMWATER for input and output are assumed to contain 
one data set per file. 

With the scalar data sets, one scalar value is listed per node, in sequential 
order based on the node ID’s.  If the data set is transient, a complete set of scalar 
values is listed for each time-step.  With vector data sets, the x-, y-, and z- 
components of the vector (velocity in this case) are listed on a node-by-node 
basis. 
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Data set files can be saved in either text or binary format.  The binary format 
results in smaller files and can result in large reductions in the disk space 
required, particularly when doing transient analyses on large meshes. 

Text Data Set File Format 

A summary of the text version of the scalar data set file format is shown in 
Figure C1. 

DATASET /* File type identifier */ 
OBJTYPE  type /* Type of objects */ 
BEGSCL /* Beginning of scalar data set */ 
ND numdata /* Number of data values */ 
NC numcells /* Number of cells or elements */ 
NAME “name” /* Data set name */ 
TS istat time /* Time-step of the following data */ 
stat1 
stat2 
. 
statnumcells 
val1 
val2 
. 
valnumdata 
/* Repeat TS card for each time-step */ 
ENDDS /* End of data set */ 
BEGVEC /* Beginning of vector data set */ 
ND numdata /* Number of data values */ 
NC numcells /* Number of cells or elements */ 
NAME “name” /* Data set name */ 
TS istat time /* Time-step of the following data */ 
stat1 
stat2 
. 
statnumcells 
vx1 vy1 vz1 
vx2 vy2 vz2 
. 
 vxnumdata vynumdata vznumdata 
/* Repeat TS card for each time-step */ 
ENDDS /* End of data set */ 
/* Repeat BEGSCL and BEGVEC sequences for each data set. */ 

Figure C1.  Text data set file format 

The first line of the file is a card without any fields that serves as a file type 
identifier. 

 
Card Type DATASET 
Description File type identifier. 
Required YES 

The next line is an identifier that tells GMS which of the objects the data set 
is associated with.  For FEMWATER, the object type should always be three-
dimensional (3-D) mesh. 
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Card Type OBJTYPE 
Description Identifies the type of objects that the data sets in the file are associated with. 
Required YES 
Format OBJTYPE  type 
Sample OBJTYPE tin 
Field Variable Value Description 

1 type tin 
mesh2d 
grid2d 
scat2d 

mesh3d 
grid3d 
scat3d 

TINs. 
2-D meshes. 
2-D grids. 
2-D scatter points. 
3-D meshes. 
3-D grids. 
3-D scatter points. 

To begin a data set, either a BEGSCL or BEGVEC card is required, 
depending on the type of data set. 

 
Card Type BEGSCL 
Description Marks the beginning of a set of cards defining a scalar data set. 
Required YES 

 
Card Type BEGVEC 
Description Marks the beginning of a set of cards defining a vector data set. 
Required YES 

The pair of lines are the ND and NC cards.  These cards are used to specify 
the number of nodes and elements in the mesh. 

 
Card Type ND 
Description The number of data values that will be listed per time-step.  This number should 

correspond to the number of nodes for a 3-D mesh. 
Required YES 
Format ND numdata 
Sample ND 10098 
Field Variable Value Description 

1 numdata + The number of items.  At each time-step, numdata values 
are listed. 

 
Card Type NC 
Description This number should correspond to the number of elements for a 3-D mesh. 
Required YES 
Format NC numcells 
Sample NC 3982 
Field Variable Value Description 

1 numcells + The number of elements. 

The next line is for the name of the data set. 
 
Card Type NAME 
Description The name of the data set. 
Required YES 
Format NAME “name” 
Sample NAME “Total head” 
Field Variable Value Description 
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1 “name” str The name of the data set, in double quotes. 

A data set can contain multiple solutions, each solution representing a 
complete set of nodal values at a particular time-step.  The TS card is used to list 
a time value and the corresponding set of scalar or vector values.  If the solution 
is steady state, only one TS card is used and the time value is set to 0.0.  If the 
solution is transient, the TS card is repeated once for each time-step. 

 
Card Type TS (SCALAR)  
Description Defines a set of scalar values associated with  a time-step.  Should be repeated for 

each time-step. 
Required YES 
Format TS istat time 

stat1 
stat2 
. 
statnumcells 
val1 
val2 
. 
valnumdata 

Sample TS 0 12.5 
34.5 
74.3 
58.4 
72.9 

Field Variable Value Description 
1 istat 0 

 
1 

Use status flags from previous time-step.  For first time-
step, this value indicates that all cells are active. 
Status flags will be listed. 

2 time + The time-step value.  This number is ignored if there is 
only one time-step. 

 stat 0 
1 

Inactive. 
Active. 
One status flag should be repeated per line for each cell 
or element.  These flags are included only when ISTAT = 
1. 

 val ± The scalar values, one per line. 
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Card Type TS (VECTOR)  
Description Defines a set of vector values associated with  a time-step.  Should be repeated for 

each time-step. 
Required YES 
Format TS istat time 

stat1 
stat2 
. 
statnumcells 
vx1 vy1 vz1 
vx2 vy2 vz2 
. 
vxn vyn vzn 

Sample TS 0 12.5 
34.5 74.4 634.4 
74.3 643.4 636.3 
58.4 745.4 346.3 
72.9 734.3 345.3 

Field Variable Value Description 
1 istat 0 

 
1 

Use status flags from previous time-step.  For first time-
step, this value indicates that all cells are active. 
Status flags will be listed. 

2 time + The time-step value.  This number is ignored if there is 
only one time-step. 

 stat 0 
1 

Inactive. 
Active. 
One status flag should be repeated per line for each cell 
or element.  These flags are included only when ISTAT = 
1. 

 vx vy vz ± The vector values, one set per line. 

Each data set should be terminated with an ENDDS card. 
 
Card Type ENDDS 
Description Signals the end of a set of cards defining a data set. 
Required YES 

Binary Data Set File Format 

Data set files can also be written in binary format.  The binary format is 
patterned after the text format in that information is written to the file in groups 
or “cards.”  There are a few additional cards in the binary version, but most of the 
cards are identical to cards in the text version except that the card identifiers are 
not written with character strings.  Rather, they are written with integer codes. 

The cards in the binary data set file are as follows: 
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Card Type VERSION 
Card ID 3000 
Description File type identifier. 
Required Yes 

 
Card Type OBJTYPE 
Card ID 100 
Description Identifies the type of objects that the data sets in the file are associated with. 
Required YES. 
Field Variable Size Value Description 

1 id 4 byte int 1 
2 
3 
4 
5 
6 
7 
8 

TINs. 
Boreholes. 
2-D meshes. 
2-D grids. 
2-D scatter points. 
3-D meshes. 
3-D grids. 
3-D scatter points. 

 
Card Type SFLT 
Card ID 110 
Description Identifies the number of bytes that will be used in the remainder of the file for each 

floating point value (4, 8, or 16). 
Required YES 
Field Variable Size Value Description 

1 sflt 4 byte int + 4, 8, or 16 
 
Card Type SFLG 
Card ID 120 
Description Identifies the number of bytes that will be used in the remainder of the file for status 

flags (1, 2, or 4). 
Required YES 
Field Variable Size Value Description 

1 sflg 4 byte int + 1, 2, or 4 
 
Card Type BEGSCL 
Card ID 130 
Description Marks the beginning of a set of cards defining a scalar data set. 
Required YES 

 
Card Type BEGVEC 
Card ID 140 
Description Marks the beginning of a set of cards defining a vector data set. 
Required YES 



 

Appendix C  Output File Formats  141 

 
Card Type NUMDATA 
Card ID 170 
Description The number of data values that will be listed per time-step.  This number should 

correspond to the number of nodes. 
Required YES 
Field Variable Size Value Description 

1 numdata 4 byte int + The number of items.  At each time-step, 
numdata are listed. 

 
Card Type NUMCELLS 
Card ID 180 
Description This number should correspond to the number of elements. 
Required YES 
Field Variable Size Value Description 

1 numcells 4 byte int + The number of elements or cells. 
 
Card Type NAME 
Card ID 190 
Description The name of the data set. 
Required YES 
Field Variable Size Value Description 

1 name 80 bytes str The name of the data set.  Use one character 
per byte.  Mark the end of the string with the \0 
character. 

 
Card Type TS (SCALAR) 
Card ID 200 
Description Defines a set of scalar or vector values associated with a time-step.  Should be 

repeated for each time-step. 
Required YES 
Field Variable Size Value Description 

1 istat SFLG int 0 
 
 

1 

Use status flags from previous time-step.  For 
the first time-step, this value indicates that all 
cells are active. 
Status flags will be listed. 

2 time SFLT real + The time-step value.  This number is ignored if 
there is only one time-step. 

 stat SFLG int 0 
1 

Inactive. 
Active. 
One status flag should be repeated for each 
cell or element.  These flags are included only 
when istat = 1. 

 val SFLT real  The scalar values.  Repeat numdata times. 
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Card Type TS (VECTOR) 
Card ID 200 
Description Defines a set of scalar or vector values associated with a time-step.  Should be 

repeated for each time-step. 
Required YES 
Field Variable Size Value Description 

1 istat SFLG int 0 
 
 

1 

Use status flags from previous time-step.  For 
the first time-step, this value indicates that all 
cells are active. 
Status flags will be listed. 

2 time SFLT real + The time-step value.  This number is ignored if 
there is only one time-step. 

 stat SFLG int 0 
1 

Inactive. 
Active. 
One status flag should be repeated for each 
cell or element.  These flags are included only 
when istat = 1. 

 vx vy vz SFLT real  The vector values.  Repeat numdata times. 
 
Card Type ENDDS 
Card ID 210 
Description Signals the end of a set of cards defining a data set. 
Required YES 
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